

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

COST ACTION TU1406

Funded by the Horizon 2020 Framework Programme of the European Union

22nd November 2018 Bergisch Gladbach, Germany

Contents

Greetings by Dr. Peter Haardt

Organizational Points by Ralph Holst

COST Action TU1406 by José C. Matos

Relevance for Bridge Owners by João Amado & Nicolas Bardou

Performance Indicators & Performance Goals by Alfred Strauss & Irina Stipanovic

Quality Control Framework by Rade Hajdin

<u>Steel truss bridge: Joseph Bridge – Israel Case Study</u> by Amir Kedar & Mor Machlev

Arch concrete bridge: Guarda, Portugal by Marija Docevska & José C. Matos

Girder beam bridges: Strymonas river bridge case by Panagiotis Panetsos

Standards, Guidelines and Recommendations by Helmut Wenzel

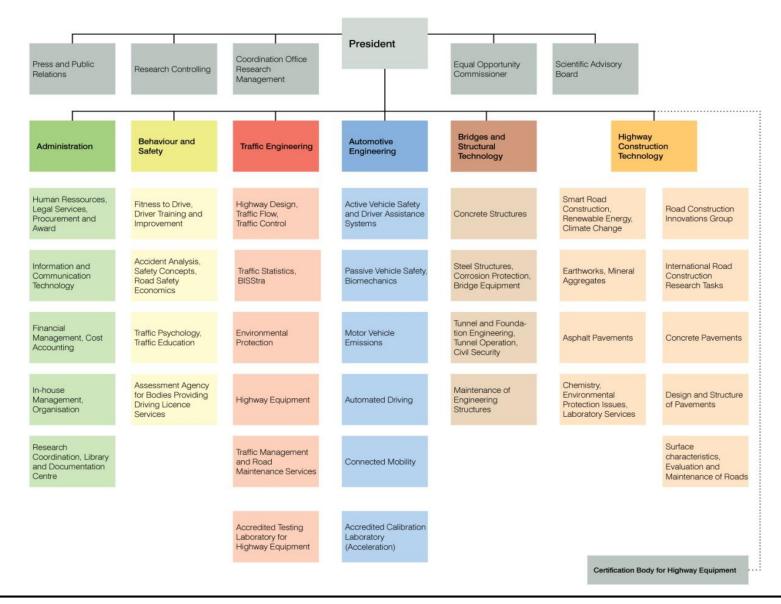
Index

COST Action TU 1406 Owners Meeting at Federal Highway Research Institute

Greetings

Dr. Peter Haardt Deputy Head of Division Bridges and Structural Technologies

Bundesanstalt für Straßenwesen



Federal Highway Research Institute (BASt)

- Technical and Scientific Research Institute
- Subordinate to the Federal Ministry of Transport
- Approximately 400 Employees
- Founded in 1951, since 1983 in Bergisch Gladbach

Responsibilities and Tasks

- Scientifically sound decision support for the ministry
- Regulations and standards at national and european level
- Testing and certification body (road equipment)
- Driving licence procedure assessment centre
- Research

Research Aims

- Improving and increasing efficiency of construction and maintenance and improving reliability of road infrastructure
- Improving efficiency of the road transport system
- Improving road safety
- Improving environmental sustainability of road construction and road transport
- Strengthening resilience of the road transport system
- Strengthening technological progress

Results

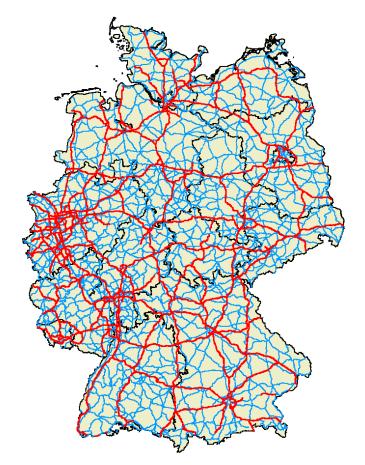
- More than 300 internal research projects per year
- About 500 external research projects
- Monitoring of national, European and international legislative and harmonisation procedures in more than 750 national and international committees

BASt Financial Resources

- Annual Budget of BASt
- Resources from the Research Budget of the Federal Ministry of Transport

46,7 Million Euro

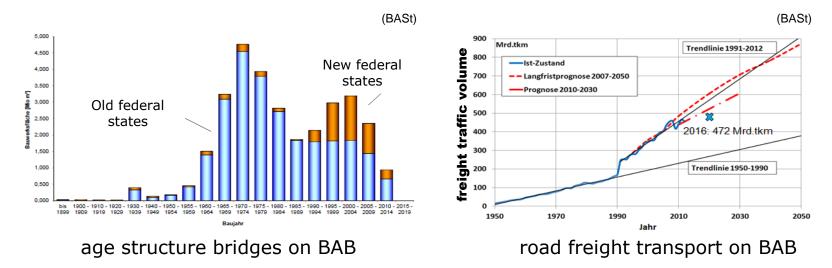
10,0 Million Euro


56,7 Million Euro

As per: 2017

Total

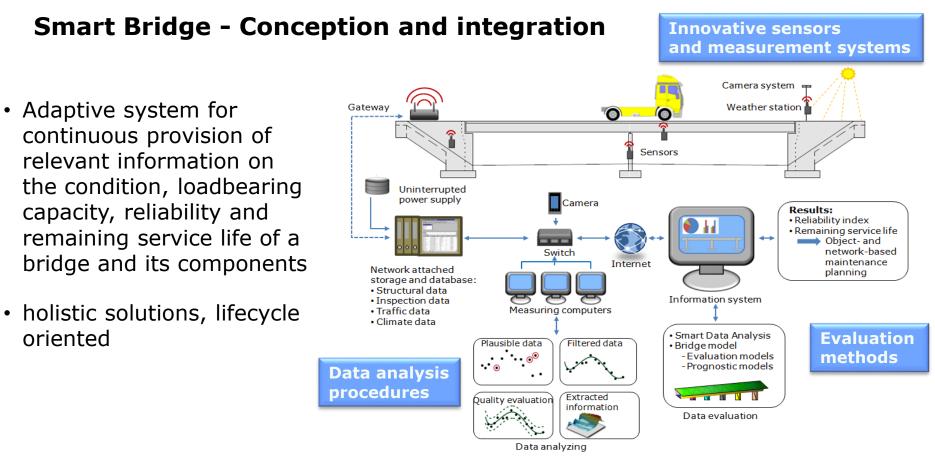
Challenges



Overall road network: ca.687.000 km Federal Highways: 12.987 km Federal Trunk Roads: 38.068 km

Federal Roads:39.535 bridgesHighways:17.729 bridgesTrunk Roads:21.806 bridgesFixed assets:~60 Bio €

Challenges



- Traditional design, construction and maintenance processes dominate
- Older bridges are not "fit for future"
- Mobility requirements conflict with actual availability of bridges

digital transformation, lifecycle-oriented solutions, advances in construction technology

Intelligente Brücke

Intelligente Brücke

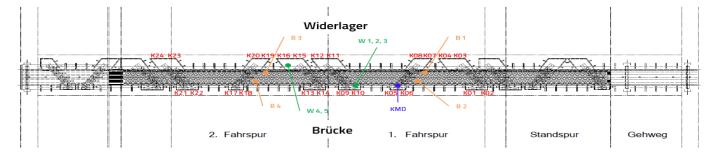
Smart Bridge in the Digital Test Area Autobahn (Pilot study)

- New bridge structure equipped with sensors in the highway interchange A3/A9
 - 4-span prestressed concrete box girder bridge
 - Length: 156 m, 2 lanes

- Determination of actions and reactions using measurement and evaluation technology to assess the condition, reliability and remaining service life
- Information system "Structural Condition", wireless sensor network, instrumented bearings, instrumented expansion joint

Instrumented expansion joint

- Swivel joists expansion joint
- Recording of traffic data
 - Number of vehicles, vehicle speed
 - Number of axles, axle distances, axle loads
- Self-monitoring
 - Gap width, lamella spacing
 - Lamella eigenfrequencies



Bundesministerium für Verkehr und digitale Infrastruktur

Accelerometers, wire-rope sensors, load cells, pressure sensors

Instrumented bearing

- Spherical bearing
- Actions and reactions relevant to the structure
 - Determination of loads using pressure sensors
 - Determination of glide paths, deformations and rotations
 - Derivation of structural eigenfrequencies
- Self-monitoring
 - Bearing rotation around the bridge axis
 - Accumulated glide path

Pressure sensors Distance sensors Displacement transducers

Thank you for your Attention!

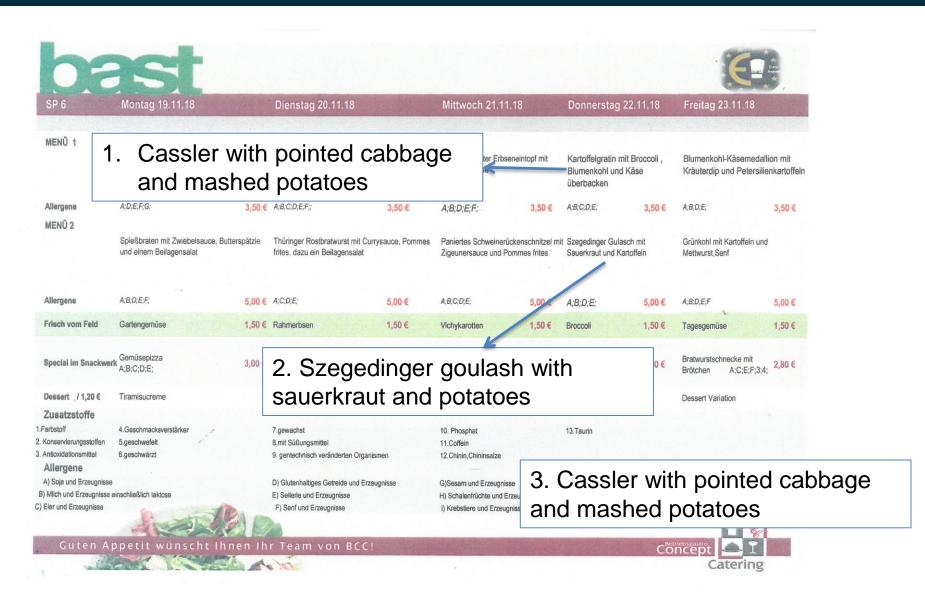
Federal Highway Research Institute Brüderstraße 53 51427 Bergisch Gladbach – Bensberg / Germany Fon +49 (0) 2204 43-0 <u>info@bast.de</u> www.bast.de

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

Organizational Points

Ralph Holst – Federal Highway Research Institute (BASt)



22nd November 2018 Bergisch Gladbach, Germany

10.00 10.20	Degistration		
10:00-10:30	Registration		
10.00.10.00	1st Session: Chair Poul Linneberg, Co-Chair Arjen van Maaren		
10:30-13:00	 <u>Greetings</u> from Dr. Jürgen Krieger (Head of Department, Bridges and Structural Technology, BASt, DE) <u>Organizational Points</u> Ralph Holst, BASt, DE <u>Introduction</u> of COST action TU1406 José Matos, UMinho, PT <u>Relevance for bridge owners</u> Nicolas Bardou, VINCI Autoroutes, FR and João Amado, Infraestruturas de Portugal, PT <u>Performance indicators and performance goals – evaluation and recommendations</u> Alfred Strauss, BOKU, AT <u>Quality Control Framework</u> Rade Hajdin, Uni. Belgrade, RS 		
	• Case-study		
12.00.14.00	Amir Kedar, Kedmor Engineers, IL		
13:00-14:00	Lunch and networking		
2nd Session: Chair: Niels Peter Høj, Co-chair Ralph Holst 14:00-16:00 Case-study			
14:00-16:00	 <u>Case-study</u> Amir Kedar, Kedmor Engineers, IL Guidelines and recommendations 		
	Helmut Wenzel, Vienna Consulting Engineers ZT GmbH, AT		
	 <u>Panel discussion</u> with active participation from the audience, 		
	moderated by Niels Peter Høj (HOJ Consulting GmbH, CH)		
	Panel consist of		
	– Alfred Strauss (BOKU, AT),		
	 Amir Kedar (Kedmor engineers, IL), 		
	 João Amado (Infraestruturas de Portugal, PT), 		
	– José Matos (UMinho, PT),		
	 Nicolas Bardou (VINCI Autoroutes, FR), 		
	- Poul Linneberg (COWI A/S, DK),		
	 Rade Hajdin (Uni. Serbia, RS), Ralph Holst (BASt, DE) and 		
	 Ralph Holst (BASt, DE) and Helmut Wenzel (Vienna Consulting Engineers ZT GmbH, AT) 		
	 Heimut wenzel (Vienna Consulting Engineers Z1 GmbH, A1) Closing 		
	Joan Casas, UPC, ES		
16:00-16:30	Coffee and networking		
16:30-	Tour in Cologne followed by networking dinner		
10.50			

22 NOVEMBER 2018 in BERGISCH GLADBACH near COLOGNE in GERMANY

10:00-10:30	Registration		
10.00 10.50	1st Session: Chair Poul Linneberg, Co-Chair Arjen van Maaren		
10:30-13:00	 <u>Greetings</u> from Dr. Jürgen Krieger (Head of Department, Bridges and Structural Technology, BASt, DE) <u>Organizational Points</u> Ralph Holst, BASt, DE <u>Introduction</u> of COST action TU1406 José Matos, UMinho, PT <u>Relevance for bridge owners</u> Nicolas Bardou, VINCI Autoroutes, FR and João Amado, Infraestruturas de Portugal, PT <u>Performance indicators and performance goals – evaluation and recommendations</u> Alfred Strauss, BOKU, AT <u>Quality Control Framework</u> Rade Hajdin, Uni. Belgrade, RS <u>Case-study</u> 		
13:00-14:00	Amir Kedar, Kedmor Engineers, IL Lunch and networking		
12.00 14.00	5		
14:00-16:00	Lunch and networking 2nd Session: Chair: Niels Peter Høj, Co-chair Ralph Holst • Case-study Amir Kedar, Kedmor Engineers, IL • Guidelines and recommendations Helmut Wenzel, Vienna Consulting Engineers ZT GmbH, AT • Panel discussion with active participation from the audience, moderated by Niels Peter Høj (HOJ Consulting GmbH, CH) Panel consist of • Alfred Strauss (BOKU, AT), • Amir Kedar (Kedmor engineers, IL), • João Amado (Infraestruturas de Portugal, PT), • José Matos (UMinho, PT), • Nicolas Bardou (VINCI Autoroutes, FR), • Poul Linneberg (COWI A/S, DK), • Ralph Holst (BASt, DE) and • Helmut Wenzel (Vienna Consulting Engineers ZT GmbH, AT)		
16:00-16:30	Coffee and networking		
16:30-	Tour in Cologne followed by networking dinner		

22 NOVEMBER 2018 in BERGISCH GLADBACH near COLOGNE in GERMANY

Organizational Points | Ralph Holst

10:00-10:30	Registration		
	1st Session: Chair Poul Linneberg, Co-Chair Arjen van Maaren		
10:30-13:00	 <u>Greetings</u> from Dr. Jürgen Krieger (Head of Department, Bridges and Structural Technology, BASt, DE) <u>Organizational Points</u> Ralph Holst, BASt, DE <u>Introduction</u> of COST action TU1406 José Matos, UMinho, PT <u>Relevance for bridge owners</u> Nicolas Bardou, VINCI Autoroutes, FR and João Amado, Infraestruturas de Portugal, PT <u>Performance indicators and performance goals – evaluation and recommendations</u> Alfred Strauss, BOKU, AT <u>Quality Control Framework</u> Rade Hajdin, Uni. Belgrade, RS <u>Case-study</u> 		
13:00-14:00	Amir Kedar, Kedmor Engineers, IL Lunch and networking		
15.00-17.00	2nd Session: Chair: Niels Peter Høj, Co-chair Ralph Holst		
14:00-16:00	 <u>Case-study</u> <u>Guidelines and recommendations</u> <u>Helmut Wenzel</u>, Vienna Consulting Engineers ZT GmbH, AT <u>Panel discussion</u> with active participation from the audience, moderated by Niels Peter Høj (HOJ Consulting GmbH, CH) Panel consist of Alfred Strauss (BOKU, AT), Amir Kedar (Kedmor engineers, IL), João Amado (Infraestruturas de Portugal, PT), José Matos (UMinho, PT), Nicolas Bardou (VINCI Autoroutes, FR), Poul Linneberg (COWI A/S, DK), Rade Hajdin (Uni. Serbia, RS), Ralph Holst (BASt, DE) and Helmut Wenzel (Vienna Consulting Engineers ZT GmbH, AT) 		
16:00-16:30	Joan Casas, UPC, ES		

22 NOVEMBER 2018 in BERGISCH GLADBACH near COLOGNE in GERMANY

10:00-10:30	Registration			
	1st Session: Chair Poul Linneberg, Co-Chair Arjen van M	laaren		
10:30-13:00	 <u>Greetings</u> from Dr. Jürgen Krieger (Head of Department, Bridgen) <u>Organizational Points</u> Ralph Holst, BASt, DE 	ges and Structural Technology, BASt, DE)		
	<u>Introduction</u> of COST action TU1406 José Matos, UMinho, PT			
	<u>Relevance for bridge owners</u> Nicolas Bardou , VINCI Autoroutes, FR and Jo	e · ·		
	 <u>Performance indicators and performance goals –</u> Alfred Strauss, BOKU, AT <u>Quality Control Framework</u> 	evaluation and recommendations		
	Rade Hajdin, Uni. Belgrade, RS Case-study			
	Amir Kedar, Kedmor Engineers, IL			
13:00-14:00				
	2nd Session: Chair: Niels Peter Høj, Co-chair Ralph Hols	t		
14:00-16:00	• <u>Case-study</u> Amir Kedar, Kedmor Engineers, IL			
	<u>Guidelines and recommendations</u> Helmut Wenzel, Vienna Consulting Engineers 2			
	<u>Panel discussion</u> with active participation from moderated by Niels Peter Høj (HOJ Consulting (Panel consist of			
	 Alfred Strauss (BOKU, AT), Amir Kedar (Kedmor engineers, IL), 			
	 João Amado (Infraestruturas de Portugal, P' José Matos (UMinho, PT), Nicolas Bardou (VINCI Autoroutes, FR), Poul Linneberg (COWI A/S, DK), 	Bus leaves BASt: 5 PM,		
	 Rade Hajdin (Uni. Serbia, RS), Ralph Holst (BASt, DE) and Helmut Wenzel (Vienna Consulting Engine Closing 	Four in Old Town: 5:30 – 6:30 PN		
16:00-16:30	Joan Cases, UPC, ES	Dinner in Brewery: 6:45 PM 10 F		
16:30-	Tour in Cologne followed by networking dinner			

22 NOVEMBER 2018 in BERGISCH GLADBACH near COLOGNE in GERMANY

I wish you a fruitful Owners Meeting and a good time in Cologne

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

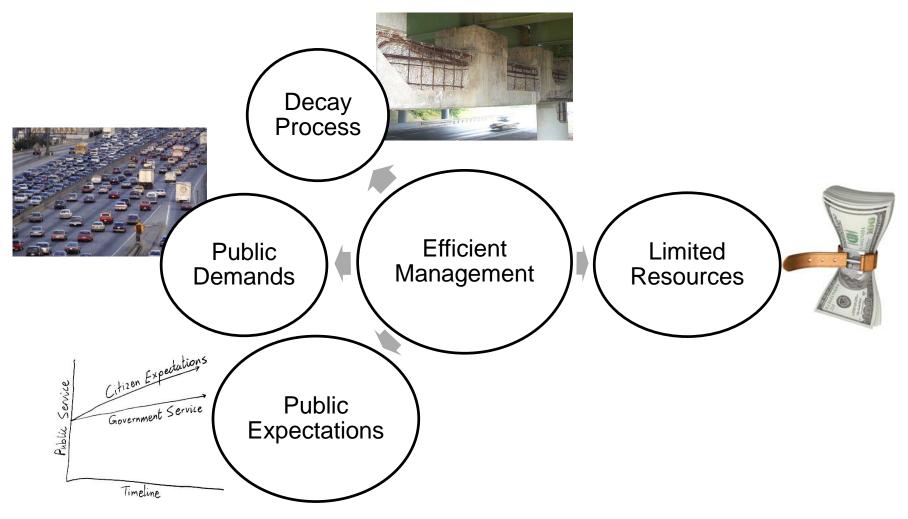
INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

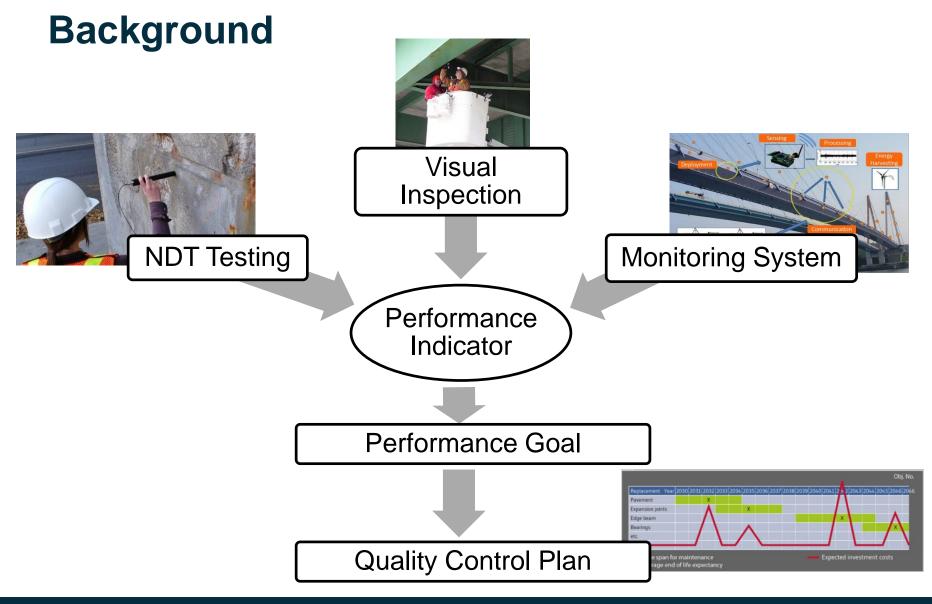
COST ACTION TU1406

José C. Matos

TU1406 Chairman University of Minho, Guimarães, Portugal



Funded by the Horizon 2020 Framework Programme of the European Union



22nd November 2018 Bergisch Gladbach, Germany

Background

Reasons for the Action

There is a **REAL NEED** to standardize the quality assessment of roadway bridges at an European Level

> CSO Approval 13/11/2014

Start of the Action 16/04/2015

End of the Action 15/04/2019

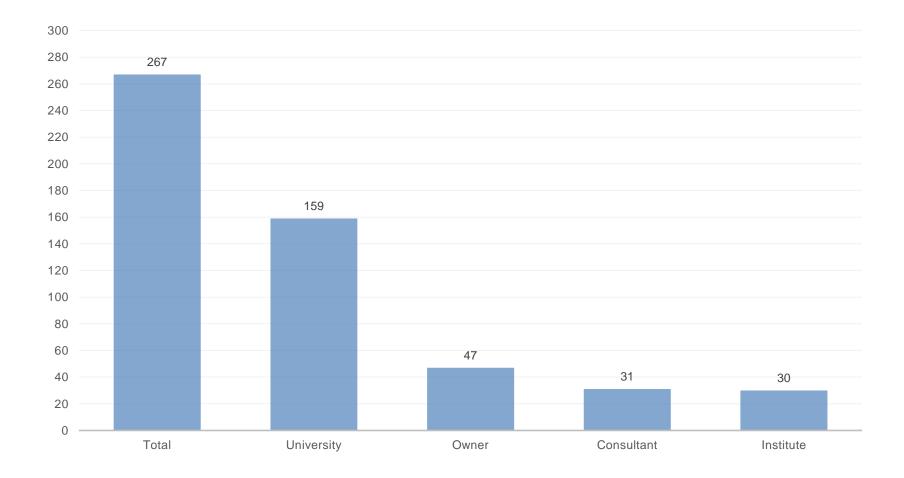
Objectives

Develop a guideline for the establishment of Quality Control (QC) plans in roadway bridges

reachable by pursuing the following 5 objectives:

- (i) Systematize knowledge on QC plans for bridges;
- (ii) Collect and contribute to up-to-date knowledge on performance indicators
- (iii) Establish a wide set of performance goals;
- (iv) Develop detailed examples for practicing engineers;
- (v) Create a glossary and a database from COST countries with performance indicator values and respective goals.

Participants



38 COST Countries + 3 COST NNC + 15 IPC = 56 Participating Countries

Participants

Scientific Programme

WG1 – Performance Indicators for Roadway Bridges

WG2 – Performance Goals for Roadway Bridges

WG3 – Establishment of a Quality Control plan

WG4 – Implementation in case studies

WG5 – Guidelines/Recommendations – Final Report

OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

SLIDE 34

TU1406

Final TU1406 Conference

Joint Event COST Action TU1406 EuroStruct

25-26 March 2019 Guimarães, Portugal

Funded by the Horizon 2020 Framework Programme of the European Union

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

RELEVANCE FOR BRIDGE OWNERS

João Amado - Infraestruturas de Portugal, Portugal Nicolas Bardou – Vinci Autoroutes, France

22nd November 2018 Bergisch Gladbach, Germany

AGENDA

- Are we facing the same Problems?
- Bridging the GAP
- Common Challenges
- The Future
- A Final Word

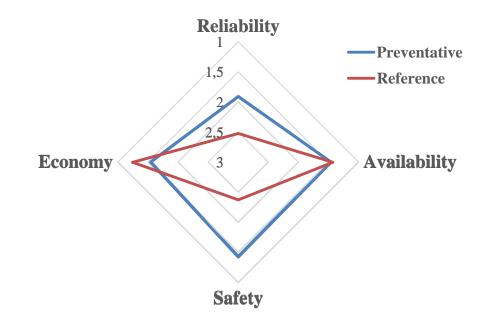
ARE WE FACING THE SAME PROBLEMS?

- Decreasing budgets
- Aging infrastructure
- Extraordinary events and increased costs
- Fewer staff
- Pressure to ensure the availability
- Increase of the traffic loading
- Pressure to increase safety

Bridging the GAP

Challenge 1

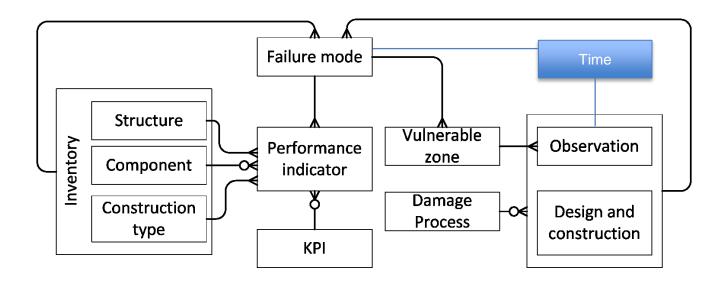
• How to translate bridge performance?


Defects	Related to loads Related to cost & Importance		Related to rating		
Related to material properties	_	_		Environmental based	
	Р				
Related to equipment & protection		-		Related to dynamic behaviour	
Related to geometry changes				d to Original uction & design	

- Survey of indicators used throughout Europe
- Database with +750 terms
- > 300 terms after homogenization and clustering

Challenge 2

• How to increasing transparency?



- Key Performance Indicators
- Comparative scenario

Challenge 3

• How to increase accuracy of our assessments?

- Framework that clearly mirrors inspector's reasoning
- Able to support a life cycle assessment

IN A NUTSHELL...

Compliance with best practices, harmonization

Transparency allowed by new indicators to better translate needs

Accuracy of the assessments with new tools, new frameworks

Keep control of the outcome

A FINAL WORD

Reliable, safer and cost-effective structures are the common quest of bridge Owners.

More cooperation, reliable data and harmonization are the keys for these goals.

We expect that COST TU1406 is the beginning of a long-term path!

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

PERFORMANCE INDICATORS & PERFORMANCE GOALS

Alfred Strauss

University of Natural Resources and Life Sciences, Vienna, Austria

Irina Stipanovic

University of Twente, Enschede, Netherlands

22nd November 2018 Bergisch Gladbach, Germany

Objectives explore for bridge structures

Performance Indicators, PIs

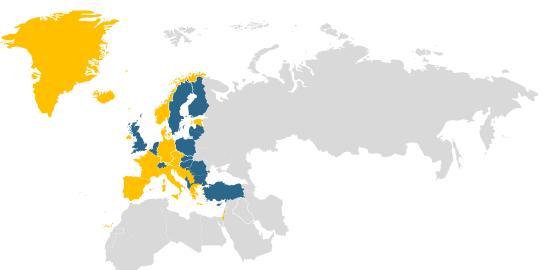
- mechanical,
- technical,
- environmental

performance and degradation processes.

- complexity in time not covered in norm specifications
- not homogenized between the European countries

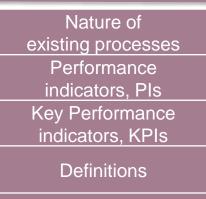
provide an overview

Performance Goals, PGs


linked to identified Key Performance Indicators.

- technical,
- environmental,
- economic, and
- social factors.

Screening of inspection, evaluation, assessment documents from the participating countries


Austria
Belgium
Bosnia and Herzegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy
Latvia

Lithuania Luxembourg Macedonia Malta Montenegro Netherlands **Norway** Poland **Portugal** Romania Serbia Slovakia Slovenia Spain Sweden Switzerland Turkey United Kingdom

Screening of inspection, evaluation, assessment documents from the participating countries

Inspection to management

OWNERS MEETING 22nd November 2018

Bergisch Gladbach, Germany

SLIDE 51

Understanding Definitions, PI's and KPI's

Observation

It is a datum (i.e. piece of information) ..., which may be acquired by human senses or by measuring/recording of some properties via adequate instruments. Observations can be qualitative i.e. only the absence or presence of a property is noted, or ... The observation is a perception of human senses or data measured by instrument that is regarded as relevant within the context of the inquiry.

Indicator

It is something that **shows** what **a situation is like**. The "situation" depends on the context of an inquiry. The indicator can be **qualitative** (e.g. bad, good, etc.) or **quantitative** and is based on analysis of one or several observations.

Understanding Definitions, PI's and KPI's

Performance Indicators, PI's

Performance indicator **measures fitness** for purpose of a physical object such as bridge or its element. Since the fitness for purpose (i.e. quality) can change over time, so does the value of a performance indicator. Maintenance interventions can also change the value of performance indicator and therefore the performance indicators of physical objects also mirror the performance of agency responsible for their maintenance. It is obvious that **bridge performance relates** to **safety** and **serviceability**, but other performance criteria can be useful as well.

Understanding Definitions, PI's and KPI's

Key Performance Indicators, KPI's

KPIs relate to a whole bridge and are as follows:

- **Reliability** is the probability of structural failure (safety), operational failure (serviceability) or any other failure mode occurring during the service life of the bridge.
- Availability is the proportion of time a bridge is open for service. It does not include failure-related service outages but the ones due to planned maintenance interventions. Alternatively, the Availability can be measured as additional travel time due to an imposed traffic regime on bridge.
- **Safety** is the situation of life and limb being protected from harm during the service life of a bridge. Loss of life and limb due to structural failure is not included by this definition (since it would overlap with the Reliability).
- **Economy** is related to minimizing the long-term cost of maintenance activities over the service life of a bridge.
- **Environment** is related to minimizing the harm to environment during the service life of a bridge.

Screening of inspection, evaluation, assessment documents from the participating countries \rightarrow 375 Terms

Performance Indicators, PIs absence/missing contamination cracking damage ... displacement

movements execution defects vibrations/oscillations

✓ Material

✓ Component

✓ System

TU1406 database comparison of terms between countries Performance Indicators 2nd Order special inspection requisite step in transition slab resistance system functionality

robustness safety index vulnerability element functionality level

Damage Processes

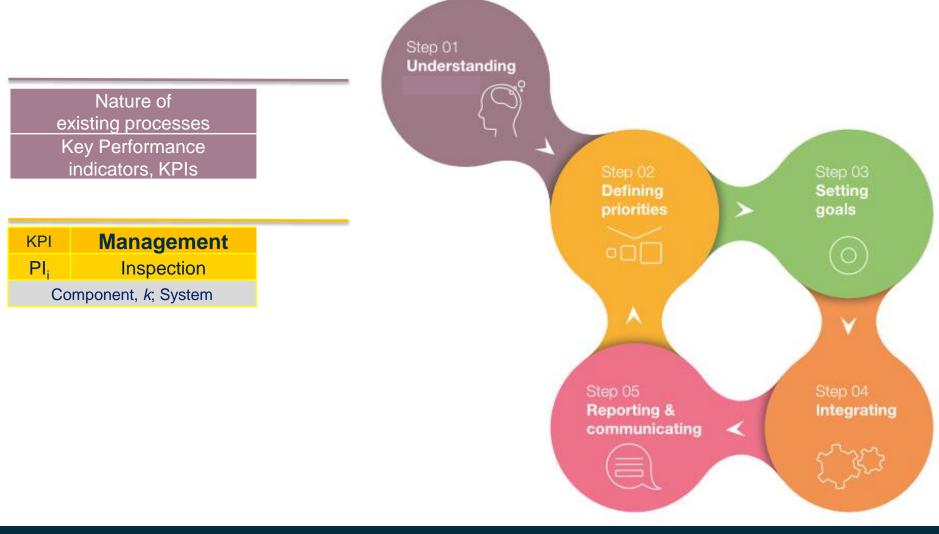
abrasion aggradation (alluviation)

> biological growth freeze-thaw

Observations

blistering bulging cavitation clogged

inadequate clearance traffic restrictions traffic volume traffic loading


Other Data

accessibility to damage carrying capacity factor

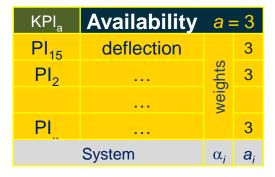
gross weight of a vehicle permanent loading

Screening of inspection, evaluation, assessment documents from the participating countries

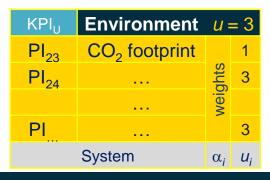
OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany


SLIDE 56

From Performance indicators (PIs) to Key Performance indicators (KPIs)


KPI	Management				
PI _i	Inspection				
Component, k; System					

KPI _r	Reliability	<i>r</i> = 3	
Pl_6	displacement		2
Pl ₃	cracking	ghts	3
		weig	
PI ₁₃			3
Compo	α_{ik}	r _i	


Pls	Performance Indicators			
1	absence/missing			
2	contamination			
3	cracking			
4	damage			
5				
6	displacement			
7	movements			
20	Vibrations/oscillations			

R. Hajdin, M. Kušar, S. Mašović, P. Linneberg, J. Amado and N. Tanasić 2018. WG3 Technical Report Establishment of a Quality Control Plan. COST TU 1406 Quality Specification for European Roadways

KPI _E	Economy	e =	= 3
PI ₁₈	maintenance		3
PI ₁₅		ghts	3
		weigl	
PI			3
	System	α_i	e _i

Status

WG1 Technical Report

Performance Indicators for Roadway Bridges of Cost Action TU 1406

General

Performance Indicators terms after surveying

Operators

Operators list of documents and database per country

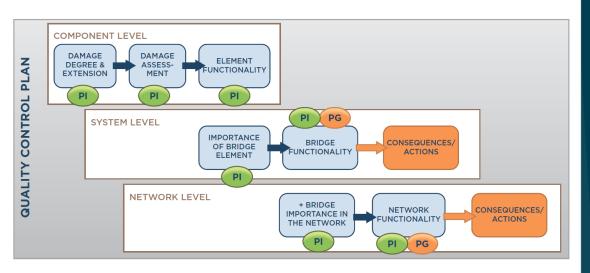
Research

Research list of documents and database per country

Glossary

Glossary and specific term sheet per country

available on website: www.tu1406.eu



Quality specifications for roadway bridges, standardization at a European level

Status

WG2 Technical Report Performance Goals for Roadway Bridges OF COST ACTION TU 1406

Available on website <u>www.tu1406.eu</u>

Quality specifications for roadway bridges, standardization at a European level

OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

SLIDE 59

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

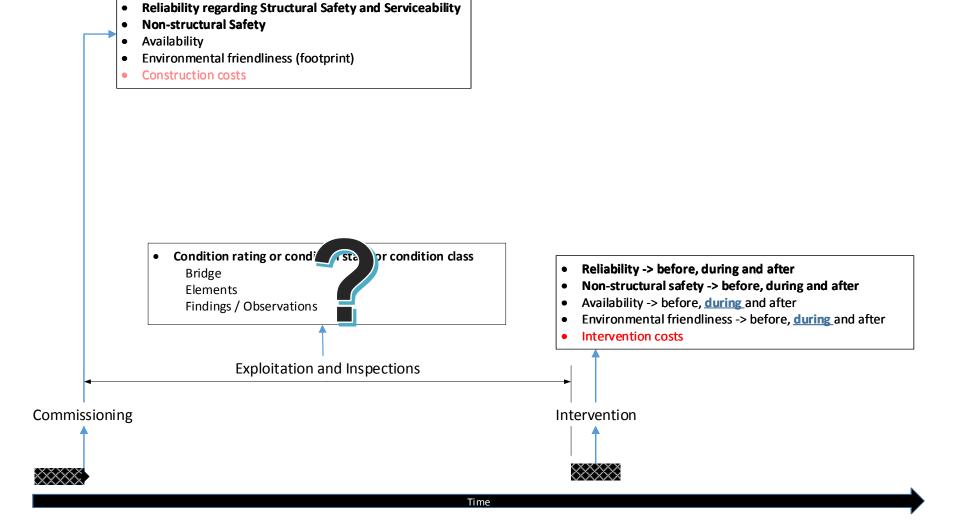
Sustainable Bridge Management

QUALITY CONTROL FRAMEWORK

Prof. Dr. Rade Hajdin - University of Belgrade, Serbia

Грађевински факултет

Универзитет у Београду


22nd November 2018 Bergisch Gladbach, Germany

Design

- Actions that are relevant for the design:
 - Dead load
 - Live load (purpose of the bridge)
 - Environmental loads
- Combination of these actions pose a threat for the safety and serviceability of structures.
- The structural analysis and checks are performed so that this threats doesn't induce a failure of a bridge
- Different combination of action trigger different failure modes.
- This is not limited to overall collapse.
- The failure modes or prevention of these is a basis for design.
- It should be a basis for diagnosing existing structures.

QUALITY CONTROL FRAMEWORK | RADE HAJDIN

Constraints to QC Framework

- Current inspection practice should not significantly change!
 - Acceptance and costs
- Collect findings visually or with simple tools
- "Onion" model:
 - Level of Accuracy can be increased by sophisticated techniques if they provided the information that justify their costs.
- Challenging task!

Approach I

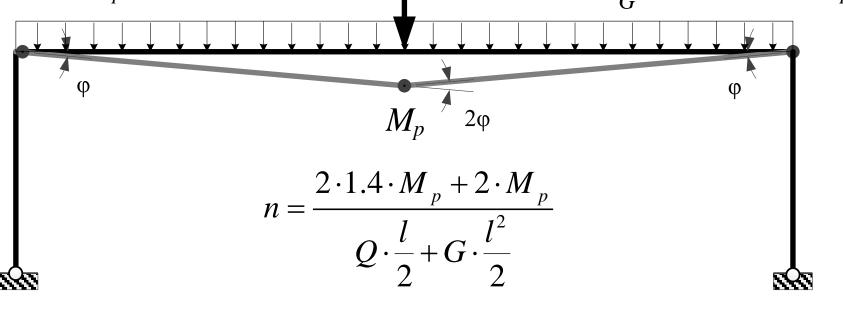
Work packages

- 1. Preparatory work (commissioning or after changes in actions)
 - Define the vulnerable zones
 - Evaluation reliability of undamaged structure = "virgin" reliability for current loading
 - The background data need to be readily accessible in a database
- 2. Inspections incl. in-depth investigation if needed (regular intervals)
 - Identify damages
 - Identify symptoms
 - Test material properties
 - Lab test
 - Assessment of reliability and non-structural safety

Approach II

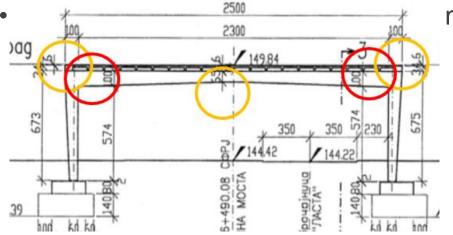
Work packages

- 3. Planning (generally after every intervention)
 - Identify active damage processes
 - Damage forecast
 - Development of reliability and non-structural safety over time
 - Define the reference scenario (e.g. intervention at the end of service life)
 - Define further scenarios inkl. cash-flow, availability, reliability, non-structural safety and environmental impact
 - Decision making i.e. triggering of interventions
- 4. Collecting intervention data


"Virgin" reliability

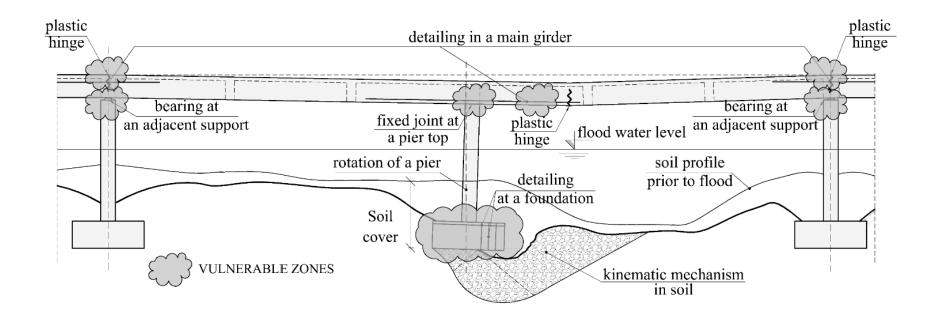
- "Exact" evaluation by structural analysis for current loading
 - 1D (frame), 2D (plates and shells) or 3D (solids) structural analysis
 - Limit states theorems
- Simplified evaluation:
 - Non-landmark bridges, simplified structural systems
 - Undamaged bridge, resistance based on a design code
 - Dead load
 Characteristic values & quantile assumptions
 - Live load
 - Relevant sample of bridges of same type
 - Errors in bygone codes, conceptual weaknesses/detailing issues to be duly considered

Application of limit states theorem


For stochastic representation of M_{Q_p} and loading Q and G probability of failure i. M_p safety index β can be evaluated. $I.4 M_p$

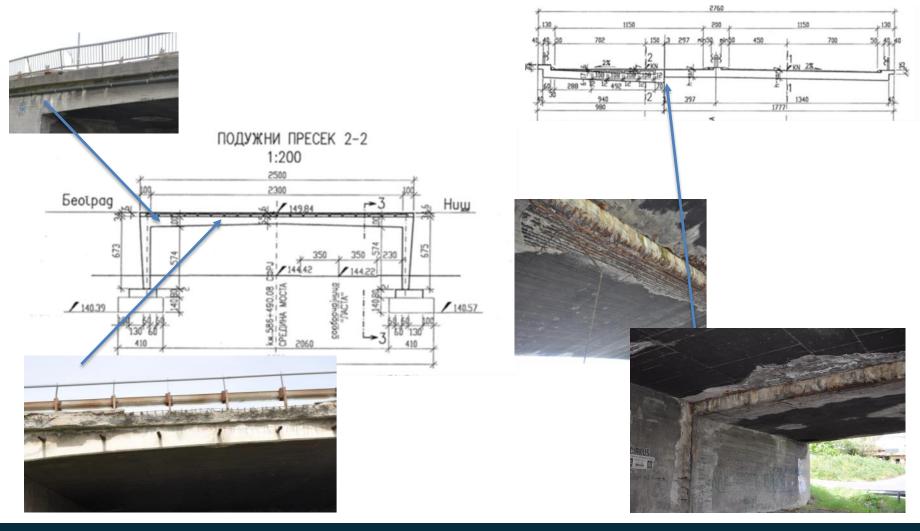
Vulnerable zones – live load

• Ductile vulnerable zone contribute to the same failure mode



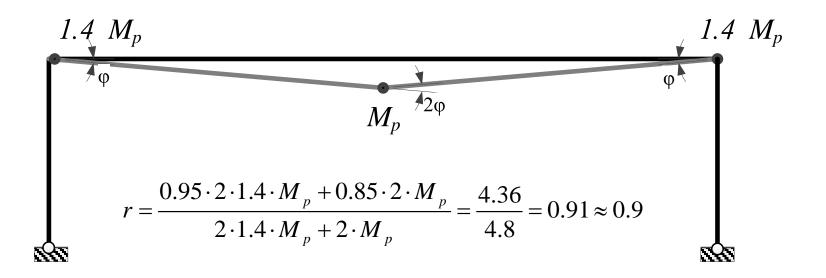
modes on their own.

HMS-high suging moment zone HMH - high hoging moment zone	orange circle	ductile
HSS - high shear zone	red circle	britle

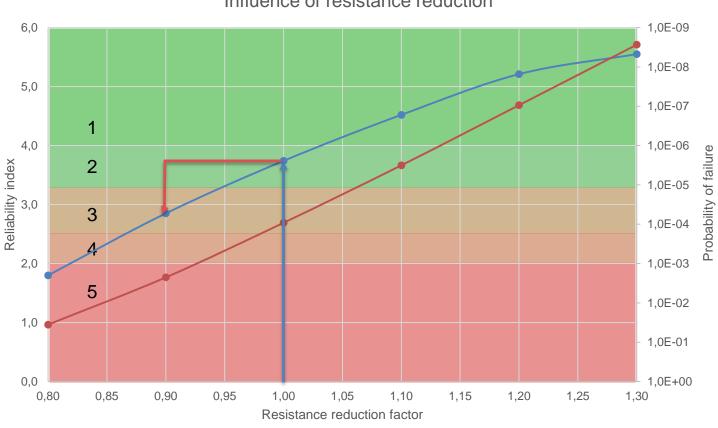


Vulnerable zone - flooding

Inspection - findings

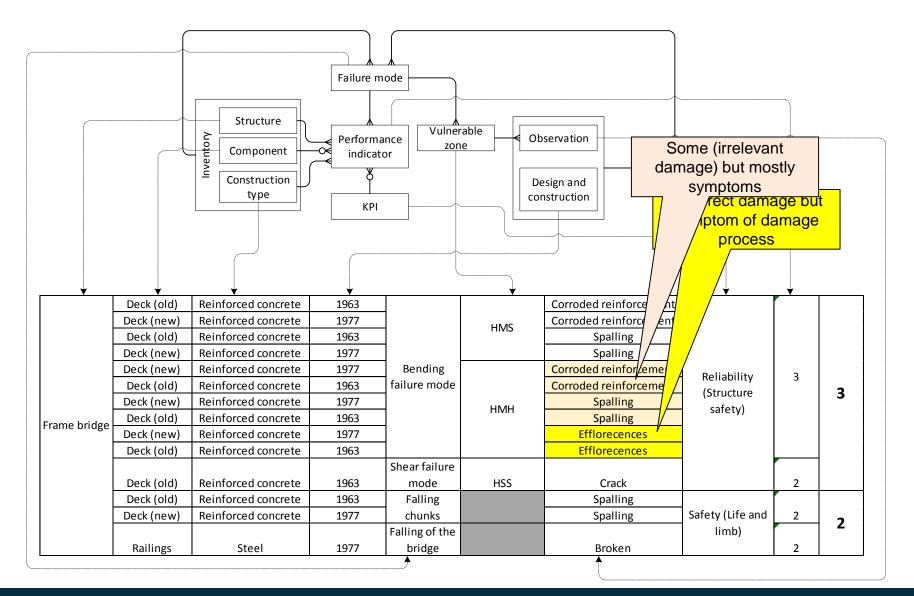


		Construction type	Perfc	rmance		prou	mostly
-	Deck (old) Deck (new)	Reinforced concrete Reinforced concrete	1963 1977	Bending	HMS	Corrode fi nent Corrod rei ement	
ļ	Deck (old)	Reinforced concrete	1963				
F	Deck (new)	Reinforced concrete	1977			Spa g	
F	Deck (new)	Reinforced concrete	1977			Corrolled reforcement	Reliability
F	Deck (old)	Reinforced concrete	1963	failure mode		Corroded f hforcement	(Structure
F	Deck (new)	Reinforced concrete	1977	4	НМН	St Alling	safety)
Frame bridge	Deck (old)	Reinforced concrete	1963	-		Salling	
Dec	Deck (new)	Reinforced concrete	1977	4		Efflorecences	
F	Deck (old)	Reinforced concrete	1963			Efflorecences	
De	Deck (old)	Reinforced concrete	1963	Shear failure mode	HSS	Crack	
	Deck (old)	Reinforced concrete	1963	Falling		Spalling	
	Deck (new)	Reinforced concrete	1977	chunks		Spalling	Safety (Life and
	Railings	Steel	1977	Falling of the bridge		Broken	limb)


Impact of damages

- Resistance is essentially internal dissipation rate that decrease with each damage.
- Resistance decrease in midfield 15% and over the column 5%

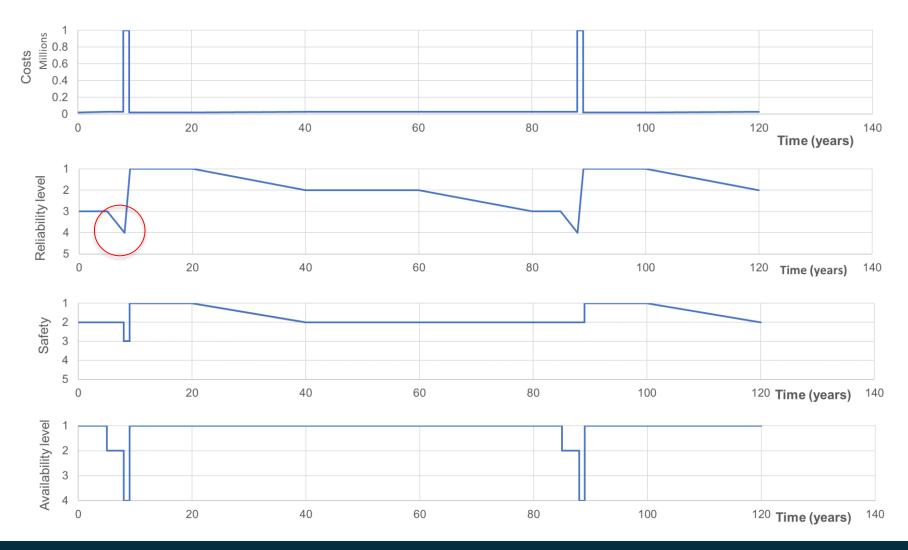
Reliability assessment of damaged bridge


Influence of resistance reduction

 $-\beta$ $-\beta$ $-\beta$

OWNERS MEETING 22nd November 2018

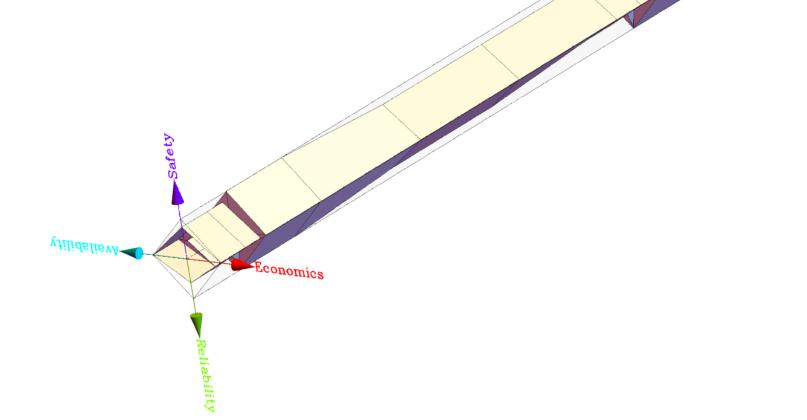
Bergisch Gladbach, Germany



Planning

- For different maintenance scenarios (strategies) one has to estimate
 - Reliability (or structural safety and serviceability margins)
 - Safety (loss of life and limb not included in structural failures)
 - Availability
 - Costs
 - Environmental impact
 - over time.
- To this end one has to forecast reliability and safety development over time.
- The current models for condition development can be used to this purpose.

Example of maintenance scenario



Comparing scenarios

- In this COST Action this approach was not chosen in order to let owners to develop their own decision approaches
 - Weighted sum
 - MAUT
 - Utility theory
- Future alternative: Monetization
 - Cost are already monetized
 - Availability can be easily monetized
 - Reliability can be only monetized together with the consequences of "failure" -> Risk
 - Safety can be only monetized together with the consequences for "life and limb" -> Risk
- The monetization is widely adopted method in research community.

3D Spider

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

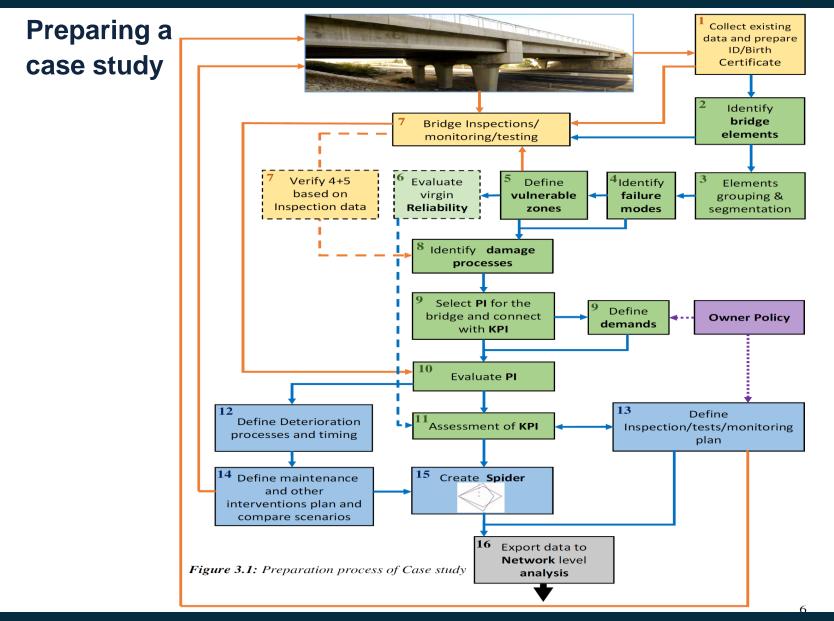
INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

Joseph Bridge over the Jordan river - Israel Case study - Steel truss road bridge

WG4

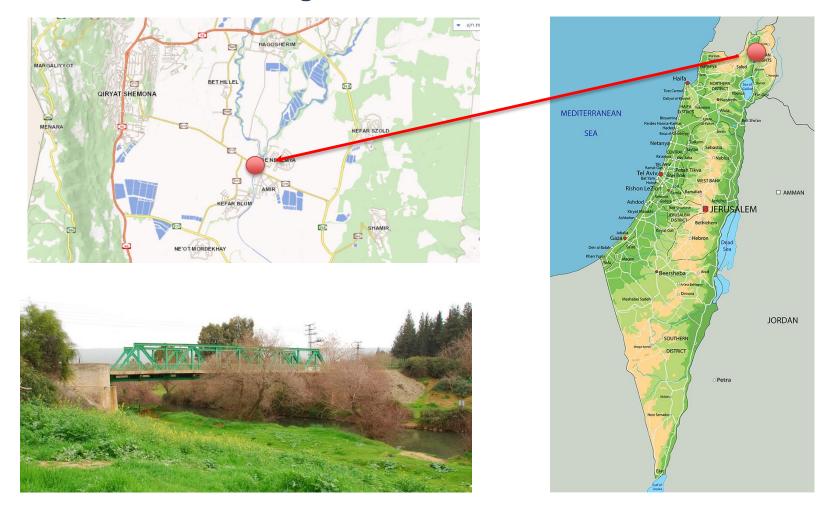
Amir Kedar – WG4 Leader , Kedmor Engineers Ltd., Israel Mor Machlev – Kedmor Engineers Ltd., Israel


22nd November 2018 Bergisch Gladbach, Germany

Content:

- 1. Preparing a case study
- 2. General data on the bridge
- 3. Technical condition
- 4. Potential failure modes
- 5. Additional investigations
- 6. KPI and QCP

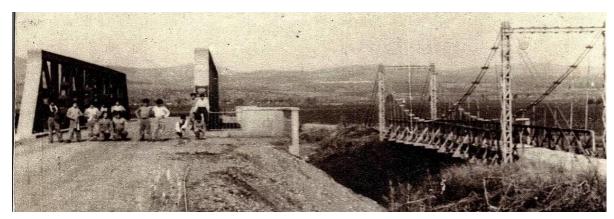
JOSEPH BRIDGE OVER THE JORDAN RIVER – ISRAEL CASE STUDY | AMIR KEDAR



OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

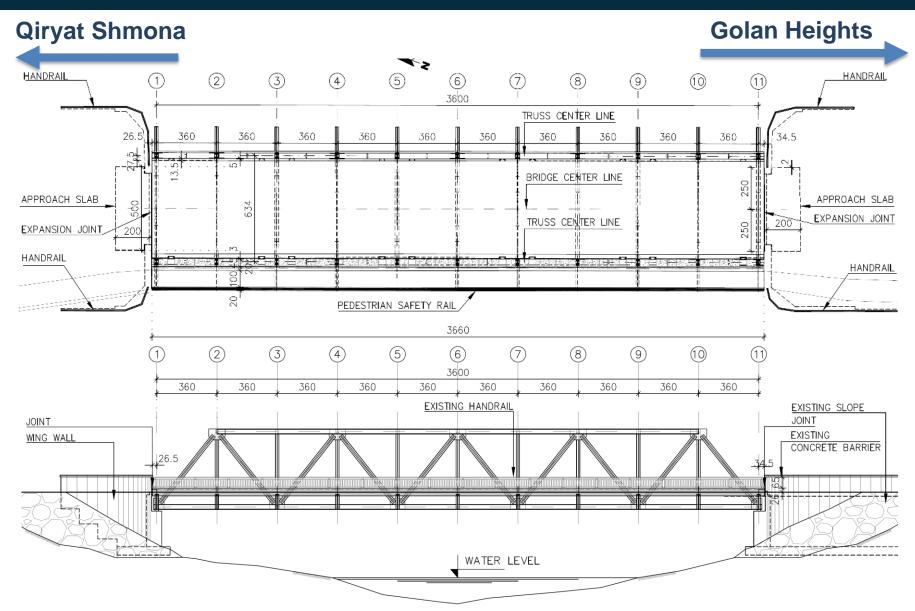
SLIDE 83

General data on the bridge:

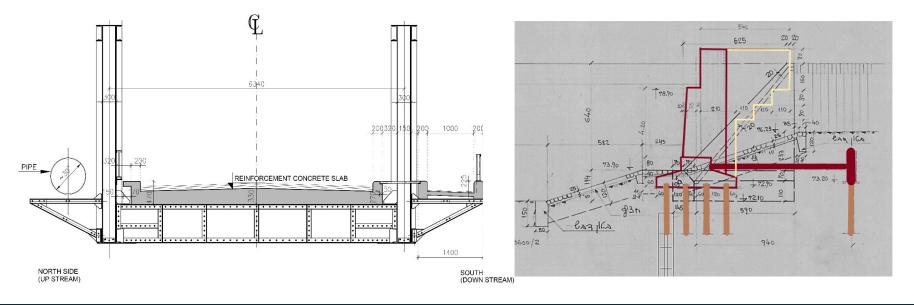


OWNERS MEETING

22nd November 2018 Bergisch Gladbach, Germany



- Built 1956
- 36 meter single-span half-through steel truss bridge
- Riveted steel plates, angles and U shape steel profiles
- reinforced concrete slab
- The bridge carries road no. 9779 across the Jordan river between north of Galilee and the Golan heights



JOSEPH BRIDGE OVER THE JORDAN RIVER – ISRAEL CASE STUDY | AMIR KEDAR

- Average annual daily traffic : 6800 (2012)
- Number of heavy cars / 24h : unknown
- The bridge is frequently crossed by heavily loaded army vehicles (MLC 120).
- Foundation are inaccessible
- Massive RC Abutments
- 4 rows of hammered piles with rear deadman anchor

Substructure:

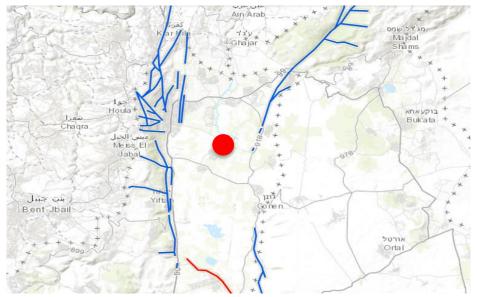
Abutments made from reinforced (discovered during investigations) massive concrete with deadman block at the back tied by buried tension girders.

Superstructure:

- 36 meters long half through riveted steel truss.
- Reinforced concrete slab of 10 bays each 3.6 meter long.
- 2 parallel trusses with centerline distance of 6.34 meter.
- 11 rigid transvers cross girders with 810mm depth forming a U shape rigid deck structure.
- Reinforced concrete deck with variable depth of 330mm to 270mm and constant width of 5570mm connected rigidly onto the transvers girders.
- 10" high pressure sewage water pipe is supported by steel cantilever brackets original designed for 30" waterpipe.
- pedestrian concrete walkway is supported in a similar way.

Equipment:

- 60mm Asphalt pavement
- Reinforced concrete slab pedestrian walkway
- Safety barrier made from steel
- Pedestrian walkway handrail made from steel
- Old buried expansion joints (not designed as buried)
- Fixed (rotation free) bearing on east side
- Roller bearing on west side


Current performance Indices in use:

According to the Israeli bridge condition rating system the status is:

<u>CPI_{av}=72</u> meaning the structure is in poor to fair condition with moderate to severe damages and possible severe influence on one or more of the bridge or element performance.

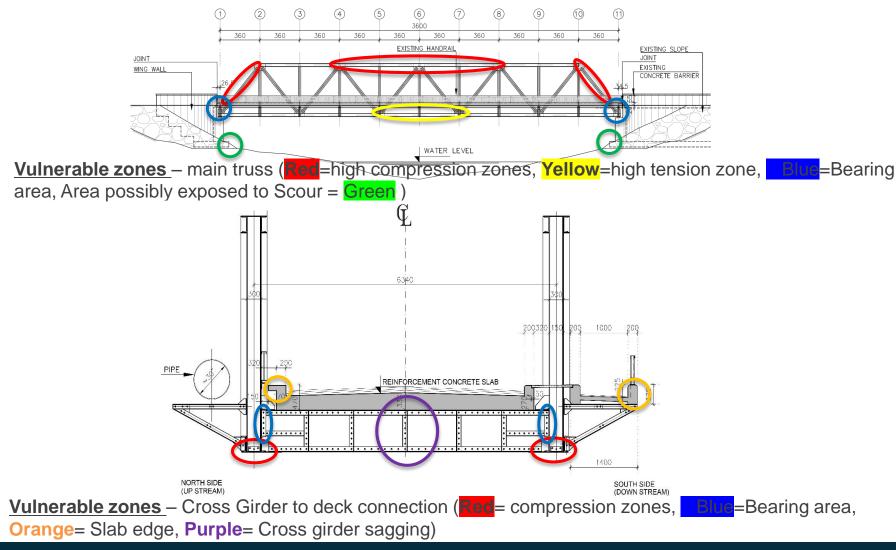
<u>CPI_{crit}=55</u> meaning possible failure of an element with severe defect or damage reducing the load carrying capacity. (taking into account the NDT done later, this score will be further reduce to 28)

SVID = 66 The Seismic vulnerability index is classified as second grade meaning an action should be taken in the near future for seismic retrofitting of the bridge.

Potential failure modes:

ULS:

- Truss failure Local failure of truss members and riveted section disintegration due to sheared rivets (fatigue).
- Truss failure global bridge failure due to loss of stability of the truss and lateral buckling under heavy live load as a result of transvers girder to truss connection rivet failure (Limiting the sway restrain of the main truss by the transvers girders)
- Truss failure local failure of truss vertical and diagonal members due to accidental load from heavy load transportation vehicle.
- Transverse girder bending/shear failure Due to excessive dynamic effect of heavy vehicles crossing the bridge.
- Failure due to Seismic loading (The bridge is located at high seismic zone) SVIb value is low.


Potential failure modes:

SLS:

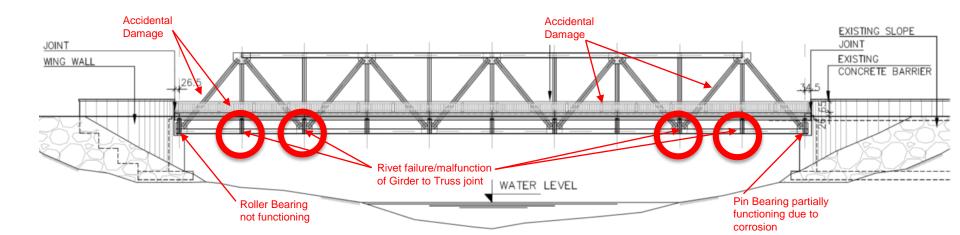
- Main Safety Barrier failure Due to accidental load from heavy load transportation vehicle
- Pedestrian Safety handrail failure Due to increased corrosion at the edge and soffit of the pedestrian concrete pathway and loss of anchoring of the handrail vertical members
- Bearing failure Loss of functioning of the roller bearing and rotation of the fixed bearings due to corrosion and accumulation of debris
- Asphalt pavement failure Due to nonfunctioning Joints and drainage.
- Concrete curb failure Possible falling of concrete chunks over the Jordan river where tourists are using boats.

Identifying Vulnerable Zones:

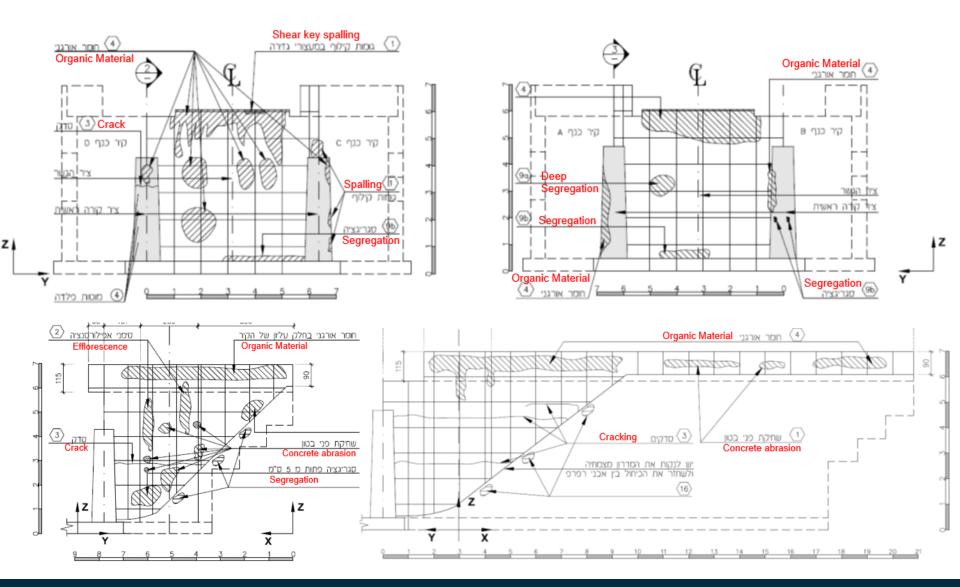
Technical condition of the bridge:

The main types of defects discovered on the bridge inspection are:

- **1. Increased vibration of the bridge during vehicle passing.**
- 2. Mild corrosion of structural steel.
- 3. Excessive relative movement of rivet head in many locations.
- 4. Out of plane deformation of steel plates at the bottom girder to truss connections.
- 5. Concrete deterioration mainly at the deck slab edges and in some locations at the wing walls and abutments.
- 6. Deterioration of the concrete closing wall behind the roller bearings


Technical condition of the bridge:

- 7. Accidental damage due to collision of vehicles with main truss vertical and diagonal members.
- 8. Defects of pavement mainly near the expansion joints.
- 9. Deck waterproofing not functioning (or missing).
- **10.Inefficiency of deck drainage.**
- **11.Deterioration of the steel handrailing and collision damages at the north side.**
- **12.Nonfunctioning roller bearings.**
- **13.Limited rotation of the pin bearings due to corrosion damages.**
- **14.Horizontal cracking in layers at Abutment A.**


 \odot ۲ ٩ ציר המסבך קיר קיים 360 ציר הגשר <u>ציר המסבך</u> הקיים a i de de de שיקום מעקה ואבן קופינג פני המדרכה 9 😡 Expansion Joint closed Cracking with spalling and with asphalt damage delaminations of concrete deck edge and soffit

SLIDE 97

Technical condition of the bridge: Steel truss defects

Fig. 21 Local collision damage to members few locations



Fig. 22 rivet relative movement

Fig. 23 Sheared rivet due to excessive dynamic loading

Fig. 24 Out of plane deformation at the bottom plates Fig. 25 Construction welding broken due to fatigue of the truss-girder connection

Fig. 26 Corrosion of truss member (typical condition) Corrosion between riveted angels and plates

Technical condition of the bridge: Concrete slab and Abutments defects

slab edge (typical along the edges)

Fig. 27 Spalling and delaminations along the deck Fig. 28 Corrosion at the connection between transverse Fig. 32 damage to closing wall near supports at massive abutment girder and the deck slab with efflorescence due to water penetrating in between the girder upper

Fig. 30 concrete spalling at massive abutments

Fig. 31 Concrete surface abrasion at massive abutments

Technical condition of the bridge: Bearings, Safety Barrier and Asphalt defects

Fig. 33 Nonfunctioning roller bearing

Fig. 34 Corrosion damage at fixed bearing

Fig. 37 Asphalt defects near and over joints

Fig. 35 safety barrier collision damage

Fig. 36 Safety barrier collision damage

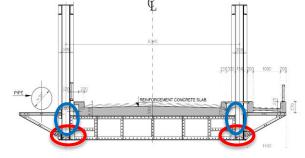


Fig. 38 Asphalt defects near and over joints

Load capacity:

- Excessive dynamic response to vehicles crossing the bridge.
- Load capacity immediately reduced to 40 ton as a safety precaution.
- Traffic detour problems for heavy vehicles.
- <u>Theoretical</u> capacity was checked according IS1227 for HA, HB & HC loads and found to be satisfactory.
- Integrity of the riveted lower connection of the transverse girders with the main truss bottom chord and truss vertical elements.
- FEM calculation model was set and the model was checked for 4 main cases:

- Case A monolithic connection
- Case B releases in 2 transverse girders
- Case C releases in 4 transverse girders
- Case D releases in all transverse girders

OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

SLIDE 101

	Case A	Case B	Case C	Case D
Safety Factor (Buckling analysis)	3.5	3	2.5	0.6
Upper chord lateral sway at mid span according to HC load (1500KN)	8.25 mm	40 mm	48.5 mm	65 mm
Upper chord lateral sway at mid span according to 600KN Truck load	3.4 mm	3.45 mm	4.5 mm	6 mm

overall stability of the truss is related directly to the degree of the fixing of the lower cross girder connection with the truss.

Dynamic measurements of load testing:

Fundamental frequency = $3.8Hz \pm 0.05$ (on vertical direction) < Calculated= 3.93HzFraction of critical damping ζ = $0.012 \div 0.014$ (1.2% - 1.4%) Lateral fundamental frequency of the truss in some cases was 10Hz.

Additional NDT testing:

Fig. 39 Results of defect rivet

405 tested at specific locations
9 Class III (Sheared)
44 Class II (Suspected)
352 Class I (OK)

Key Performance Indicators and QC Plan:

Structure type	Group	Component	Material	Design & Construction	Failure mode	Location/ Position	Damage /Observation	Damage process	KPI	Perfor Indic compo	ator	Perfor val	mance ue	Estimated failure time																					
Str	9			construction		Position		process				level		R (max)	\$ (max)	[years]																			
						Upper chord	Corroded plates	Corrosion		2.3				40																					
					Truss Bending	compression zone	Corroded rivet	Corrosion		2.3				40																					
					failure mode	Lower chord	Corroded plates	Corrosion		2.3				40																					
						tension zone	Corroded rivet	Corrosion		2.3				40																					
		Main	Steel	1954	Truss Shear failure mode Diagonals Corroded plates Corrosion Corroded rivet Corrosion		Corroded plates	Corrosion		2.3	4.1			40																					
		Trusses		1554		Corrosion		2.3	4.1			40																							
					ianare moae		Accidental damage	Impact	Structure	2.0				20 <mark>(?)</mark>																					
	ents				Global	Connection of	sheared rivet	Fatigue		4.1				15																					
ТВ	ıral elements	iral eleme			buckling of truss upper chord	truss verticals Out of plane with deck cross movement of lower Fatigue girder connection plate	Fatigue		4.1		4.1	2.1	20																						
	Structural		Steel		Bending	High sagging area	Shear connection with deck corroded	Corrosion		2.1				30																					
	S	Cross girders		Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	Steel	1954	web plate buckling	Bearing area over main truss	Rivets are partially sheared	Fatigue	4.1	4.1	4.1			20
					Bending	Along the girder	Corroded rivet	Corrosion		2.1				40																					
			lab Reinforced concrete				1954	Bending	HMS/bottom	delamination	Corrosion	Reliability	2.1	2.1			30																		
		Deck slab		1954	Falling chunks	bottom	Spalling	Corrosion	Safety (Life and limb)	2.1	2.1			30																					
				1954	Bending	HMH	Efflorescence	Leaching	(Symptom)	(2.1)																									
		Bearings	Steel	1954	Bearing Failure	Abutment 1 (west)	Corrosion	Corrosion	Reliability	2.0	4.0			40																					

Key Performance Indicators and QC Plan:

ture De	Group			Design &		Location/	D (0)	Damage		Performance Indicator		Performance value		Estimated failure
Structure type	Gro	Component	Material	Construction	Failure mode	Position	Damage /Observation	process	КРІ	compo lev		R (max)	(max)	time [years]
		Bearings	Steel	1954	Bearing Failure	Abutment 1 (west)	Bearing restrained no movement due to corrosion and debris	Corrosion	Reliability	4.0				20
		Bearings	Steel	1954	Bearing Failure	Abutment 11 (east)	Loss of rotation ability due to Corrosion	Corrosion	Reliability	3.0				20
		Abutment	Reinforced concrete	1954		Abutment 1 (west)	Spalling and delamination at closing wall	Joint leaking	Reliability	3.0	3.0			20
		Abutment	Reinforced concrete	1954	Bearing Failure	Abutment 1 (west)	closing wall with horizontal crack	Closing of joint	Reliability	3.0				20
		Wing wall	Reinforced concrete	1954		Wing wall	Horizontal cracking		Reliability	2.1	3.3			-
		Wing wall	Reinforced concrete	1954		Wing wall	Spalling	Corrosion	Reliability	3.3	5.5			-
		Wing wall	Reinforced concrete	1954		Wing wall	Surface abrasion	Abrasion	(Symptom)	3.3	-			
		Expansion Joint	steel	1954	Closing	EJ 1 (west)	Closing of EJ	Deck movement	Reliability	3.0	3.0			
		Pedestrian Deck slab	Reinforced concrete	1954	НМН	Over transvers supporting truss	Transvers cracks	Not active	Reliability	2.3	2.3			20
		Pedestrian Deck slab	Reinforced concrete	1954	Falling chunks	South Edge	Spalling	Corrosion	Safety (Life and limb)	3.3	3.3			20
		Safety barrier	Steel	1954	Falling of the deck	Safety barrier	Broken, missing parts	Impact	Safety (Life and limb)	3.0	3.0			10 <mark>(?)</mark>
	nent	Pedestrian Handrail	Steel	1954	Falling of the deck	Handrail anchoring	Corrosion of structural steel	Corrosion	Safety (Life and limb)	2.7	2.7	-	3.3	30
	Equipment	Curb	Reinforced concrete	1954	Falling chunks	Curb side	Spalling, delaminations	Corrosion	Safety (Life and limb)	3.3	3.3			20
	ш	Pavement	Asphalt	Estimated 2005	Sudden disturbance to driver	Expansion joints overlay	Open transvers cracks	Joint reflection cracking	Safety (Life and limb)	3.3	3.3			5

Key Performance Indicators and QC Plan- category definitions (WG3)

Reliability:

ULS - Table 12.1 Scale for KPI Reliability (structural safety) and urgency of intervention

Reliability scale	Quantitative scale (β)	Urgency of intervention					
1	> 4.00	Regular inspection					
2	3.25-4.00	Reassessment should be performed to update the period between inspections					
3	2.50-3.25	Reassessment should be performed to plan an optimal time of an intervention					
4	2.00-2.50	Reassessment and possible intervention shall be performed shortly after an inspection					
5	< 2.00	Immediate action/intervention is required					

SLS -Table 12.2 Scale for KPI Reliability (serviceability) and urgency of intervention

Reliability scale	Quantitative scale (β)	Urgency of intervention
1	> 2.50	Regular inspection
2	2.00-2.50	Reassessment should be performed to update the period between inspections
3	1.50-2.00	Reassessment should be performed to plan an optimal time of an intervention
4	1.00-1.50	Reassessment and possible intervention shall be performed shortly after an inspection
5	< 1.00	Immediate action/intervention is required

Key Performance Indicators and QC Plan

Reference scenario:

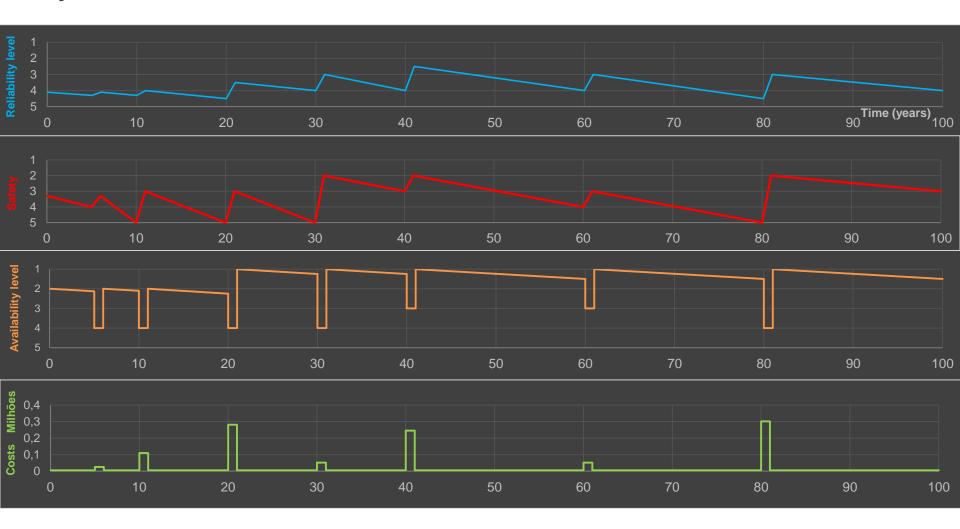
- The reference approach is lacking of any <u>planed</u> major repairs of the bridge component and accessories except for periodical pavement repairs.
- Interventions are triggered following defects development up to the Component failure.
- Inspection schedule increased in time

Preventive/Corrective scenario:

- One of few possible life cycle approaches.
- The bridge is going to be completely rehabilitated bringing its reliability index to the maximum possible target which is 'As new'.
- The intervention will take place in the next two years following design period.
- Preventive intervention regime is established with 10, 20 and 40 years.
- Inspection and testing schedule as defined in the regulations

Key Performance Indicators and QC Plan – Reference scenario:

Component	Time (years)	Description	Repair cost	Comments	
Expansion Joints	5	Expansion joints not functioning		Replace expansion joints and	
Asphalt overlay	5	Crack development over expansion joints and creation of potholes. Reduction of driving safety & increased probability for accidental impact load hitting the main truss members.	24000	pavement including waterproofing. Clean bearings	
Safety barrier 10 Deck slab curbs		Collapse in 10 years due to possible accidental damage Deterioration of side curbs and ends of slab		Replace safety	
Concrete slab	15-20	Edge spalling and soffit delaminations is predicted to develop into unsafe condition to the users of the boat service passing below the bridge.	110000	barriers and rehab. Slab edges - (10y instead of 20y)	
Truss - girder connection	20	Fatigue induced fracture of rivets lead to connection failure and global truss failure		Gradual reduction of global F.O.S	
Abutment	20	Failure of closing wall	280000	Rehab. closing wall	
Bearings	20	Bearings failure due to corrosion		Replace with elastomeric	
	6	OWNERS MEETING 22 nd November 2018		SLIDE 107	


Bergisch Gladbach, Germany

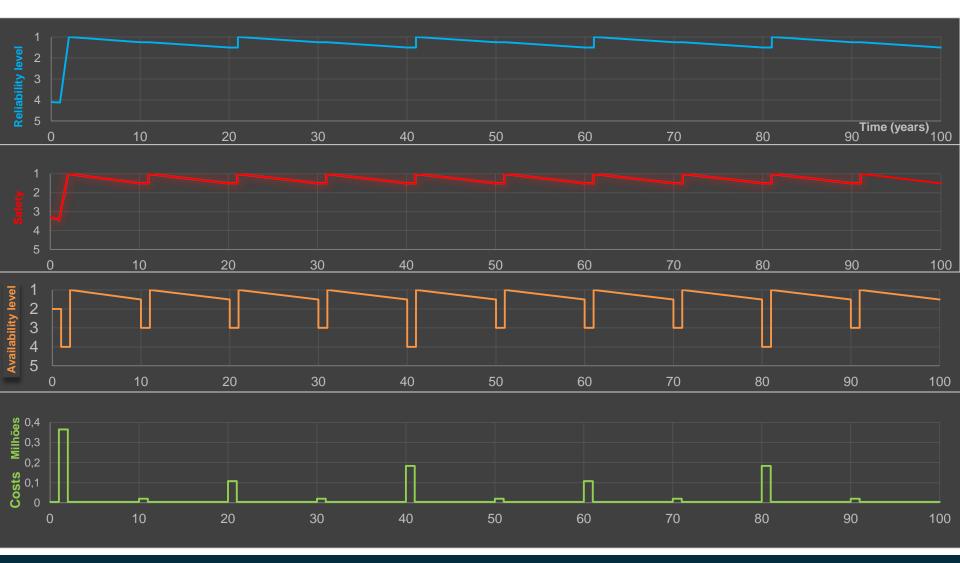
Key Performance Indicators and QC Plan – Reference scenario:

Component	Time (years)	Description	Repair cost	Comments	
Handrail anchors	30	Anchoring of pedestrian handrail is deteriorating due to corrosion		Rehab. handrails Replace additional rivets by Bolts	
Steel cross girders	30	Fatigue of rivets and shear connectors	50,000		
Deck slab	30	Deterioration of reinforced concrete			
Truss members	40	Truss failure due to Corrosion in 30 to 40 years' time based on the site climate and the current condition		Rehab. All steel members of truss and cross girders	
Expansion Joints		Expansion joint full deterioration	244000		
Pavement		Asphalt and waterproofing deterioration		Replace asphalt and waterproofing	

Key Performance Indicators and QC Plan – Reference scenario:

Key Performance Indicators and QC Plan – Preventive/Corective scenario:

Immediate bridge rehabilitation (€365000)

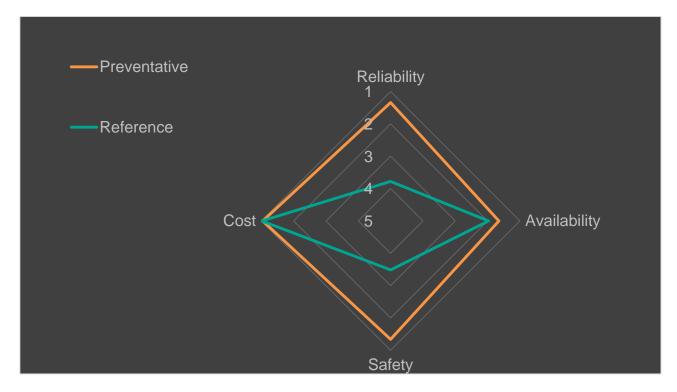

Component	Time (years)	Description	Repair cost
Abutments + Slab	1	Complete concrete elements repair	74800
Curb	1	Concrete curb replacement	10400
Truss - girder connection	1	Joints connection repair including about 400 rivets replacement and plate replacement	89300
Truss + Girders	1	Local rivet replacement, Local member strengthening, Overall bridge painting	71164
Expansion Joints	1	Expansion joints replacement	14200
Bearings	1	Bearing rehabilitation	17750
Safety barrier	1	Replacing safety barrier with new one including end blocks	65550
Handrails	1	Rehabilitation of the pedestrian handrails	9000
Pedestrian slab	1	Pedestrian deck overlay	3120
Deck overlay	1	New waterproofing and asphalt overlay.	11200
		OWNERS MEETING 22 nd November 2018 Bergisch Gladbach, Germany	SLIDE 110

Key Performance Indicators and QC Plan – Preventive/Corective scenario:

Scheduled interventions Budget

Treatment		yearly	10y	20y	40y
Yearly maintenance (cleaning)		1020	1020	1020	1020
Inspection (every 2 years)		2040	2040	2040	2040
Asphalt			6100	6100	6100
Safety Barrier			6100	6100	6100
Overall paint (steel)				41850	41850
Concrete treatments				27500	27500
NDT and special testing				10460	10460
Expansion joint replacement				13080	13080
Rivet replacement					48000
Bearing replace/rehab.					22300
Waterproofing					5500
	Total	3060	15260	108150	183950
	OWNERS MEETING 22 nd November 2018 Bergisch Gladbach, Germany			ξ	GLIDE 111

Key Performance Indicators and QC Plan – Preventive scenario:



Key Performance Indicators and QC Plan – Comparing scenarios:

Preventative approach is clearly more appropriate for this truss bridge

- The cost is little more but all other indicators shows more favorable results for all aspects.
- The reliability and safety are kept in higher levels all over the period.

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

Arch concrete bridge in Guarda, Portugal

Marija Docevska – University Ss. Cyril and Methodius-Skopje, R. Macedonia Jose Campos e Matos – University of Minho, Campus de Azurem, Portugal

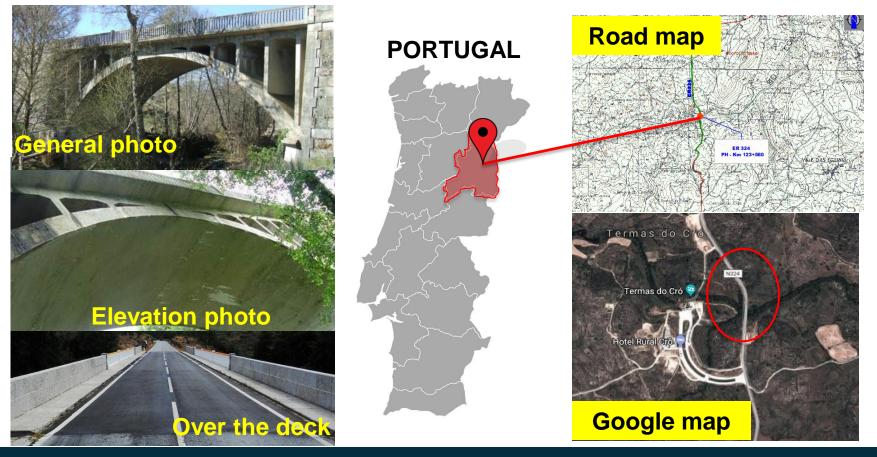
22nd November 2018 Bergisch Gladbach, Germany

Outline

- Selecting a case study bridge
- Collection of existing data
- Failure modes and vulnerable areas
- Evolution of virgin reliability
- Maintenance scenarios
- Conclusion

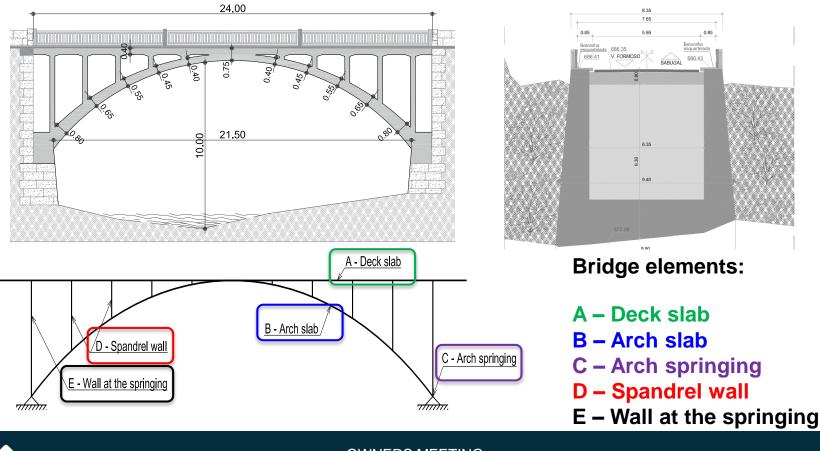
Selecting a case study bridge

1. One of the defined common prototype of road bridges


- Girder bridge Concrete, Composite
- Arch bridge <u>Concrete</u>, Steel, Masonry
- Frame bridge Concrete, Steel
- 2. The bridge was built and maintained by a highway authority
 - Infraestruturas de Portugal
 - Construction year: 1940
- 3. Inspection history:
 - two inspections (1st:2007 / 2nd:2015) and one repair work (2010)
- 4. Data of NDT exists
 - concrete cover; depth of carbonation; moisture content in the concrete; petrographic analysis

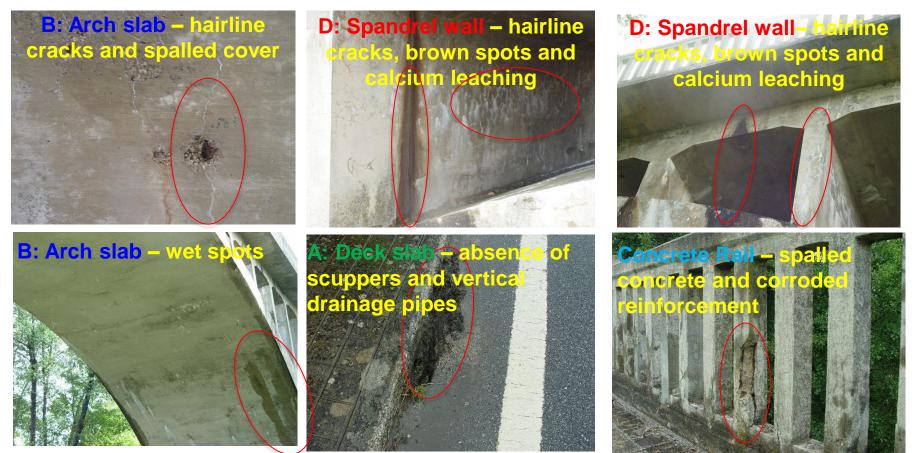
- 1. Bridge location
- Sabugal, Guarda district Portugal; bridge over a river Cró
- 2. Structural system and bridge elements
- Simple supported deck arch (arch type acc. to WG3: open spandrel)
- **3.** Defects on the main structural elements identified during inspections
- Spalling, hairline cracks, calcium leaching, brown spots, direct wetting of concrete, corroded steel bars...

- 1. Bridge location
- Sabugal, Guarda district Portugal; bridge over a river Cró



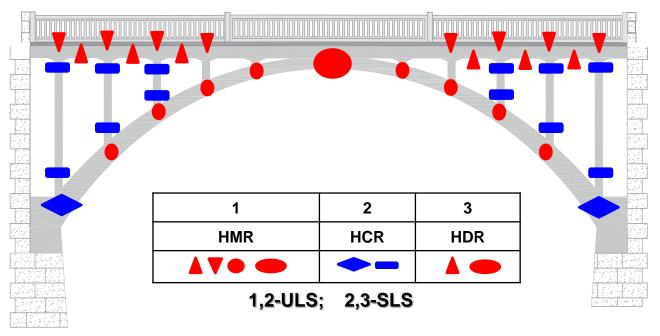
- 1. Bridge location
- Sabugal, Guarda district Portugal; bridge over a river Cró
- 2. Structural system and bridge elements
- Simple supported deck arch (arch type acc. to WG3: open spandrel)
- **3.** Defects on the main structural elements identified during inspections
- Spalling, hairline cracks, calcium leaching, brown spots, direct wetting of concrete, corroded steel bars...

- 2. Structural system and bridge elements
- Simple supported deck arch (arch type acc. WG3: open spandrel)



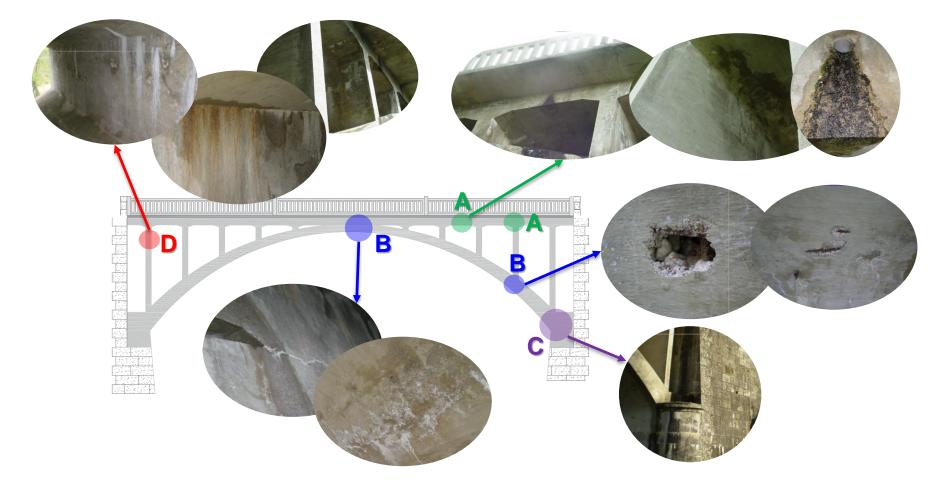
- 1. Bridge location
- Sabugal, Guarda district Portugal; bridge over a river Cró
- 2. Structural system and bridge elements
- Simple supported deck arch (arch type acc. to WG3: open spandrel)
- **3.** Defects on the main structural elements identified during inspections
- Spalling, hairline cracks, calcium leaching, brown spots, direct wetting of concrete, corroded steel bars...

3. Defects on the main structural elements identified during inspections


3. Defects on the main structural elements identified during inspections

Failure modes and vulnerable areas

• Definition of the failure modes for the actual structural system and corresponding vulnerable areas

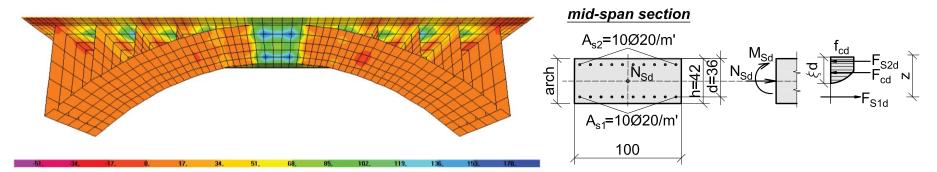


- HMR High Moment Region
- HCR High Compression Region
- HDR High Deflection Region

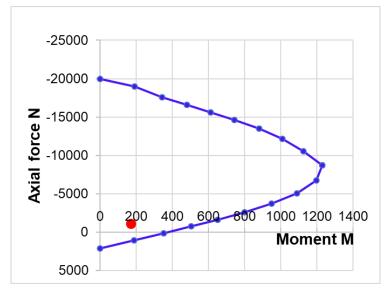
Failure modes and vulnerable areas

Link between vulnerable areas and observed defects

Failure modes and vulnerable areas

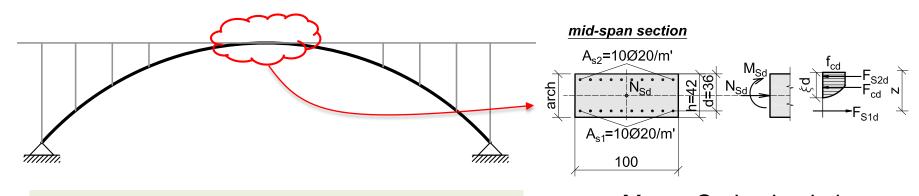

• The QC protocol

Failure mode	Vulnerable area	Element	Damage observations	Damage process	KPI	Performance value (1-5)	Overall rating
	٨	Deck	Efflorescence	Leaching	Symp.	/	R=4
	Α	Deck	Wet spots	-	Symp.	/	S=2
		Arch	Surface cracks	Corrosion	R	3	_
	В	Arch	Spalling	Corrosion	R	1	_
Bending		Arch	White spots	Carbonization	R	3	_
failure	AB	Deck	Efflorescence	Leaching	Symp.	/	_
		Deck	White spots	Carbonization	R	3	_
		Arch	Longitudinal crack	Structural damage	R	3	
		Arch	Surface cracks	Corrosion	R	3	-
Commencian	С	Arch	No damage	/	/	/	_
Compression failure	D	Walls	Surface cracks	Corrosion	R	4	_
		Walls	Brown spots	Corrosion	R	3	-
Falling from	/	Railing	Spalling	Corrosion	S	2	-
the bridge	/	Railing	Cracks	Corrosion	S	2	


Evolution of virgin reliability

Analytical assessment

 $M_{Sd}(\gamma_G, \gamma_Q) \le M_{Rd}(\gamma_C, \gamma_S)$ $N_{Sd}(\gamma_G, \gamma_Q) \le N_{Rd}(\gamma_C, \gamma_S)$ $n = M_{Sd}/M_{Rd}(or N_{Sd}/N_{Rd})$


section	\mathbf{M}_{Sd}	M _{Rd}	n	N _{Sd}	N_{Rd}	n
Mid-span	171.91	221.32	0.77	1144.91	20000	0.06
Support	/	/	/	/	/	/

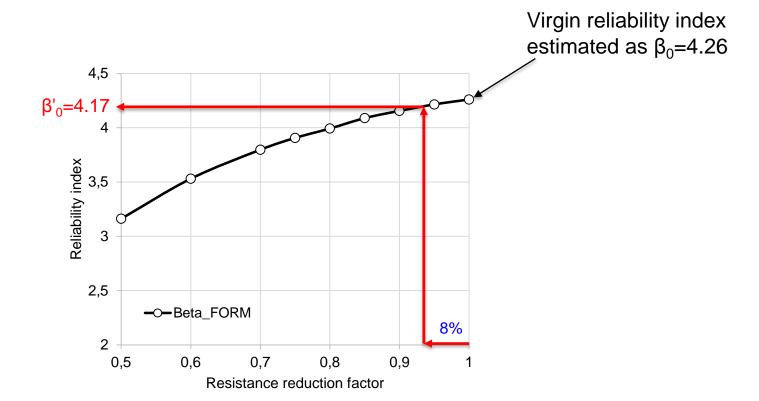
Evolution of virgin reliability

• Reliability index

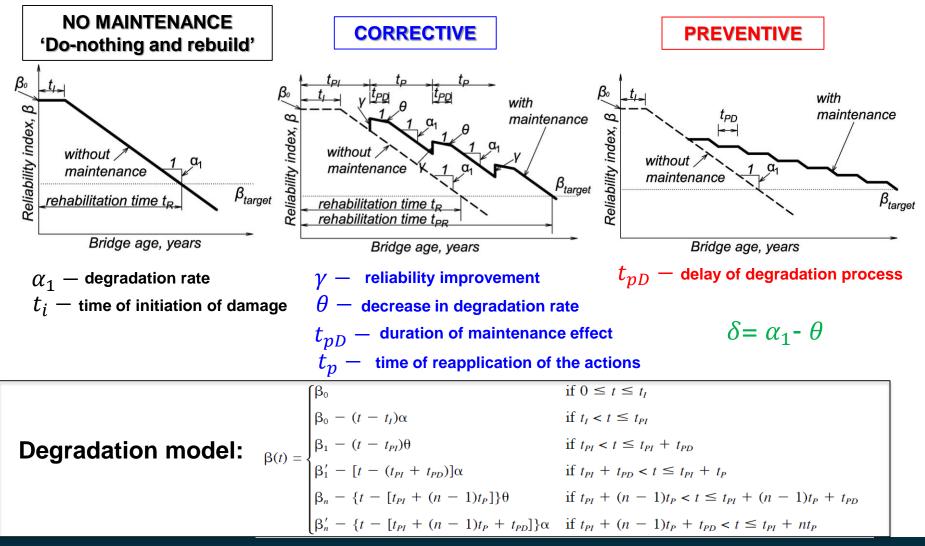
Limit state function:
$$g(R,S) = R - S = 0$$

 $R = M_{Rd} = F_{cd} \times z + F_{sd2} \times (d - a_2) - N_{sd} \times \left(\frac{h}{2} - a_1\right)$
 $S = M_{sd} = 159.18kNm; N_{sd} = 1060.10kN$
Monte Carlo simulation
 $\beta = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2}} = -\Phi^{-1}(P_f)$

Overall bridge reliability – Parallel systems
$$P_{f} = 1 - \prod_{i=1}^{2} [1 - P_{fi}]$$


Since the bridge is simple supported arch, the overall bridge reliability is equal to the reliability of mid-span section

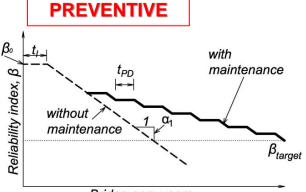
$$\beta_0^{bridge} = \beta_0^{mid-span} = -\Phi^{-1}(P_f)$$
$$\beta_0^{bridge} = 4.26$$


Evolution of virgin reliability

• Influence of a resistance reduction on reliability index

8% qualitatively assumed resistance reduction based on the observed defects during the last inspection

• Choosing parameters for degradation models – based on experts opinion


$\begin{array}{c|c} & t_{Pl} & t_{P} & t_{P} \\ \hline & t_{l} & y & t_{PQ} \\ \hline & t_{l}$

CORRECTIVE

Bridge age, years

Action	td [years]	δ [years ⁻¹]	Y [/]
Crack sealing	[0.5 1.5 3]	[0.7 0.8 0.9]	[2 1 1]
Depth conc. repair	-	-	[1 0 0]
Waterproofing	[2 3 3]	[0.75 0.8 1.0]	-
Bearing replacement	-	-	[2 2 2]

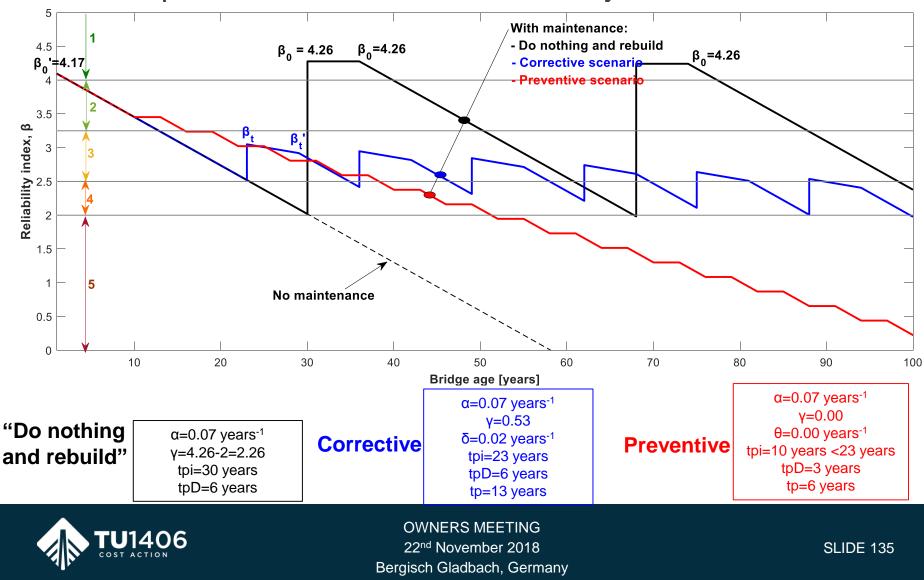
 $\delta = \alpha_1 - \theta$

Bridge age, years

Action	td [years]	δ [years ⁻¹]	y [/]
Deck washing	[1 1.5 2]	-	-
Minor spall repairs	[1.5 2 3]	-	-
Concrete spot painting	[4 6 8]	[0.3 0.4 0.5]	-
Bearing cleaning	[0.5 1 2]	-	-
min	avg	max	

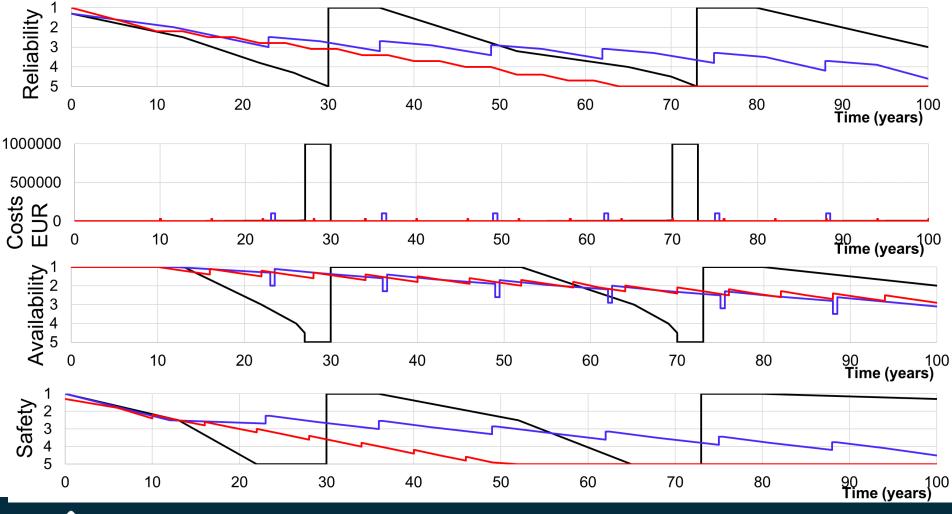
CORRECTIVE

No.	Picture	Defect description	Corrective action	Cost
1		Three to four isolated moderate spalls and delamination of the pavement, moderate riding quality.	Repairing the asphalt wearing surface (1), applying thin overlay and anti-slip pavement (2).	(1) 50EUR/m2 (2) 40EUR/m2
2		A lot of cracking due to corrosion of reinforcement	Replacement of the concrete railing	50EUR/m'
3		Over 50% of the walls have cracks, brown spots and leakage	Repair the walls	250EUR/m3
4		Localized areas of white and wet spots, surface cracks	 (1) Rehabilitation of the concrete deck slab; (2) Improvement of drainage system (3) waterproofing placement 	(1) 200EUR/m2 (2) 100EUR (3) 50EUR/m2 + 10EUR/m'
5		Failure of the sealer material. Water and debris can freely enter the opening and damage the bridge elements below.	Repair / Replacement of the expansion joints including surrounding concrete ('viajoint')	200EUR/m'

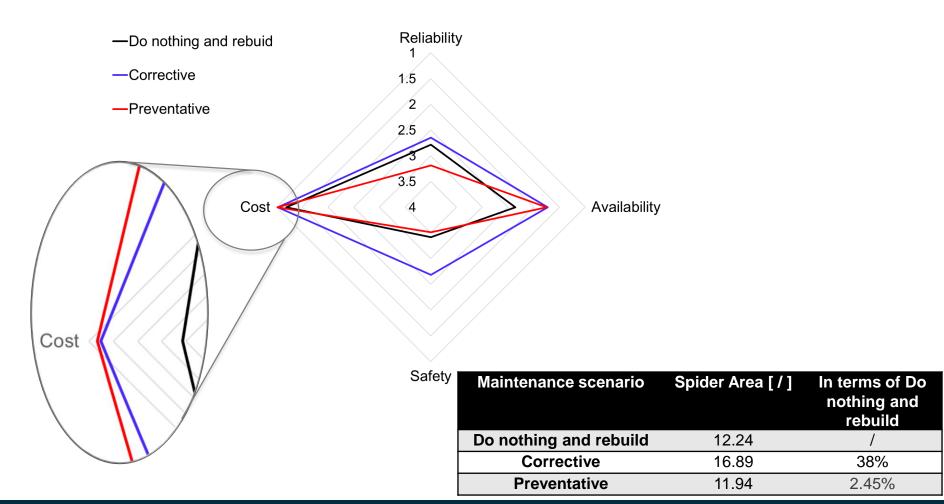


PREVENTIVE

No.	Picture	Defect description	Prevent. action	Cost
1		Reduced diameter of the sinks	Cleaning the scuppers	/
2		Vegetation and deterioration	Cleaning and Repairing the sidewalks (execution of new RC sidewalk)	50EUR/m2
3		Over 50% of the walls have cracks, brown spots and leakage	Cleaning and surface repair of concrete (<30mm) in localized areas, removing degraded concrete, cleaning and protecting the reinforcement	30EUR/m2
4		Localized areas of white and wet spots, surface cracks	Cleaning and concrete deck sealing (1); filling or sealing of cracks with width >0.30mm (2)	(1)100EUR/m' (2) 50EUR/m'
5		Three to four isolated moderate spalls and delamination of the pavement, moderate riding quality.	Clean the bridge, sealing the cracks in the asphalt, apply overlayers	20EUR/m2



• Semi-quantitative evolution of reliability index over time


LEGEND: "Do nothing and rebuild" Corrective Preventive

• Qualitative evolution of KPIs over time

Comparison

Conclusion

- With the applied quality control plan, 'virgin' reliability, anticipated failure modes and related vulnerable areas were taken into account, bringing some adventages in terms of other element-oriented quality control methodologies. With such a holistic approach, preventative maintenance and possible rehabilitation can be planned and optimized.
- Established methodology is applicable also in the quantitative manner, which is the aim of the further research.

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

Girder beam bridges - Sub group B1 Strymonas river bridge case

Panagiotis Panetsos – Egnatia Odos A.E., Greece

22nd November 2018 Bergisch Gladbach, Germany

STRYMONAS RIVER BRIDGE SELECTED FOR GIRDER BEAM USE CASE

The Strymonas river bridge is a 8 span bridge, built by pre-stressed concrete, founded on the river bed of the Strymonas river, with multi column piers through piles.

The total length of the bridge is 240m, its pavement width -including sidewalks-is 12.00 m, providing two traffic lanes.

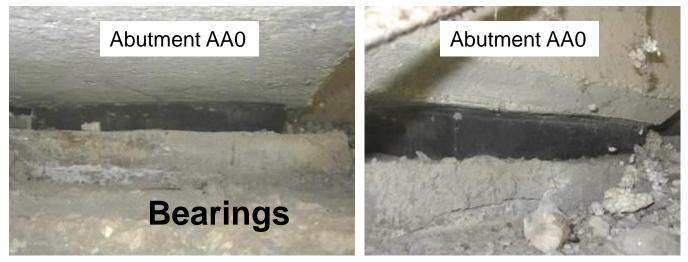
All 8 main spans over the entire river bed are 30 m long each, built by 5 precast pre-stressed concrete T beams. All spans are simply supported, through elastomeric bearings on the multi column bents. The age of the bridge is estimated some 30 years old.

Year of construction: 1987 Deck: 5 prestressed concrete beams Bridge length: 237.60m Span no: 8 (×30.00m long) Joint type: Elastomeric expansion joint (anchored) T50 Bearing type: Elastomeric orthogonal Type NB1

DEFECTS DETECTED DURING INSPECTIONS

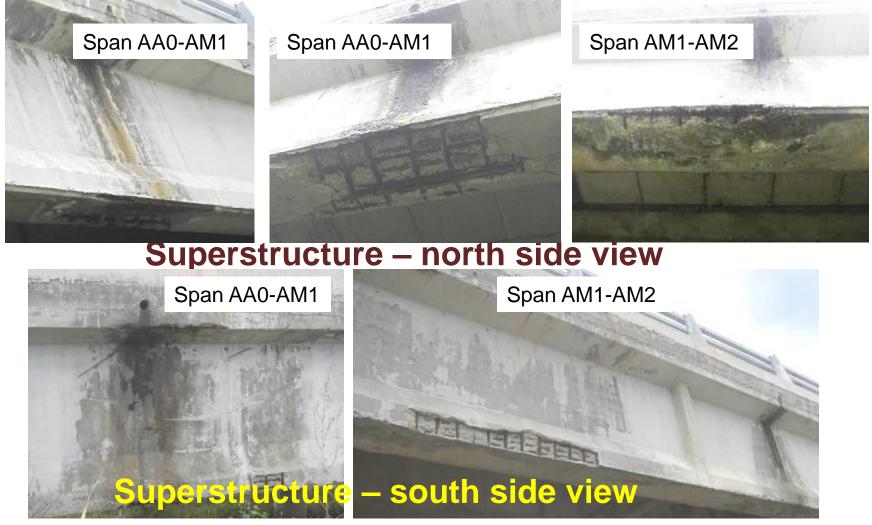
- Wet spots / moisture or wetting areas mainly at the ends of the abutment due to the incapacity of the superstructure's expansion joint.
- Light efflorescence on the surface of the concrete.

STRYMONAS GIRDER BEAM RIVER BRIDGE | PANAGIOTIS PANETSOS



Wetting of concrete's surfaces, heavy spalling of concrete, exposed and totally corroded steel bars.

Areas with voids all over the surface of piers.


Type 1 bearings of acceptable condition on the abutments. Poor condition of concrete bottom plinths

OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

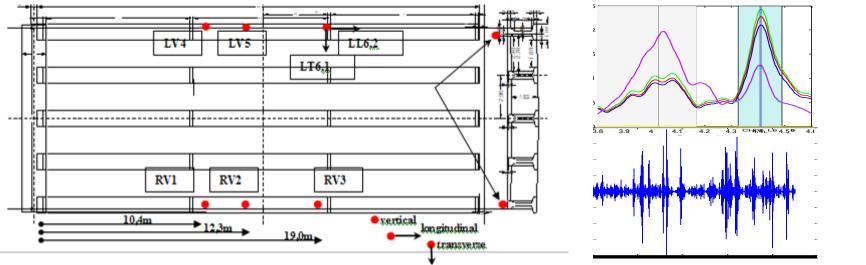
SLIDE 145

Absence of vertical drainage pipes. Direct wetting of concrete, efflorescence, heavy spalling, exposed and serious corroded mild steel bars, exposed and corroded external covering of tensioning ducts and strands.

Damage evolution vs time

OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

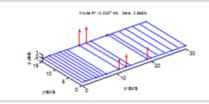
SLIDE 147

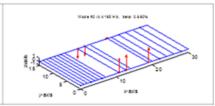

Catastrophic testing for identifying the actual properties of the bridge Concrete's compress strength assigned to 20MPa, and yield stress of steel bars assigned to 420MPa, according to the design.

For the assessment calculations, laboratory strength and specimen testing were carried out.

	i) d _o (n 12,	nm) ,1	2.		13	διαρρα σ _δ (Μι 434, 442,	- ἡς 2a) 8 1	Τάση θραύσης σ _θ (MPa) 717,5 716,2 716,8	Ø1.40 B25 Bst 420/500
Фортіо	Αντοχή πυρήνα (MPa)	L1	L2	L4	Ισ.αντοχή κυλίνδρου	L3	к	ύβου	
182,5	24,29			1.03	20,4	1,208		24,7	
134,6 96,8	17,92 16,11	0,855	0,958	stren	gth fron	1,238	:	18,7	Per CP
120,6 142,8	16,05 19,01			1,03	16,0	1,246 1,233		19,8	
	L ₀ (mm 60 60 Фортіо (kN) 182,5 119,3 134,6 96,8 120,6	L _o (mm) d _o (n 60 12 60 12 60 12 60 12 Фортіо Ачтохћ пирћуа (MPa) 182,5 24,29 119,3 15,88 134,6 17,92 96,8 16,11 120,6 16,05 142,8 19,01	L₀ (mm) d₀ (mm) 60 12,1 60 12 Φορτίο Αντοχή πυρήνα L1 (kN) (MPa) 182,5 24,29 0,852 119,3 15,88 0,855 134,6 17,92 0,855 96,8 16,11 0,857 120,6 16,05 0,855 142,8 19,01 0,855	L₀ (mm) d₀ (mm) f (n of 60 12,1 114 0 60 12 113,097 Φορτίο Αντοχή πυρήνα L1 L2 (kN) (MPa) - - 182,5 24,29 0,852 0,958 119,3 15,88 0,855 0,958 134,6 17,92 0,855 0,958 96,8 16,11 0,857 0,958 120,6 16,05 0,857 0,958	L₀ (mm) d₀ (mm) f (n Of Steel (C) 60 12,1 114 Of Steel (C) 60 12,1 114 Of Steel (C) 60 12 113,097 5000 Φορτίο Αντοχή L1 L2 L4 (kN) (MPa) - - - 182,5 24,29 0,852 0,958 1.03 119,3 15,88 0,855 0,958 Com 134,6 17,92 0,855 0,958 Stren 96,8 16,11 0,857 0,958 Stren 120,6 16,05 0,857 0,958 1,03 142,8 19,01 0,855 0,958 1,03	L₀ (mm) d₀ (mm) f (n Of steel bars) 60 12,1 114 114 0 8100 60 12 113,097 5000 8100 Φορτίο Αντοχή πυρήνα L1 L2 L4 Ισ.αντοχή κυλίνδρου (kN) (MPa) - - - - 182,5 24,29 0,852 0,958 1.03 20.4 119,3 15,88 0,855 0,958 1.03 20.4 119,3 15,88 0,855 0,958 1.03 20.4 119,3 15,88 0,855 0,958 1.03 20.4 120,6 16,05 0,857 0,958 strength from 96,8 16,11 0,857 0,958 strength from 142,8 19,01 0,855 0,958 1,03 16,0	Μήκος Διάμετρος Δια Y Ield Stress διαρο 60 12,1 114 steel bars 300 434, 60 12,1 114 steel bars 434, 60 12 113,097 5000 8100 442, Φορτίο Αντοχή L1 L2 L4 Ισ.αντοχή L3 (kN) (MPa) - - - - 438, 119,3 15,88 0,855 0,958 1.03 20.4 1.208 119,3 15,88 0,855 0,958 1.03 20.4 1.208 119,3 15,88 0,855 0,958 1.03 20.4 1.208 134,6 17,92 0,855 0,958 Compress 1.246 120,6 16,05 0,857 0,958 1.03 16,00 1.246 142,8 19,01 0,855 0,958 1,03 16,00 1,233	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Μήκος L _o (mm) Διάμετρος d _o (mm) Δια f (n 12,1 Y leid Stress f (n 14,0 δίαρροής σ _δ (MPa) θραύσης σ _θ (MPa) 60 12,1 114 114 8250 434,8 717,5 60 12 113,097 5000 8100 442,1 716,2 Φορτίο Αντοχή πυρήνα L1 L2 L4 Ισ.αντοχή κυλίνδρου L3 Ισ.αντοχή κύβου (kN) (MPa) - - - - 20.4 1.208 24,7 119,3 15,88 0,855 0,958 1.03 20.4 1.208 24,7 119,3 15,88 0,855 0,958 1.03 20.4 1.238 18,7 134,6 17,92 0,855 0,958 Compress 1.246 16,7 1.246 17,0 120,6 16,05 0,857 0,958 1,03 16,0 1,233 19,8 142,8 19,01 0,855 0,958 1,03 16,0 1,233 19,8

Ambient vibration Monitoring

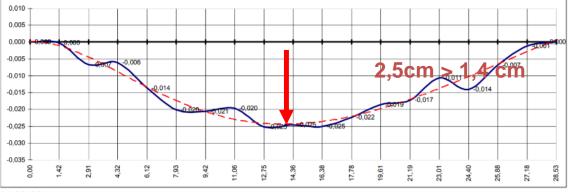

Uniaxial FB Accelerometers arrays installed on the bottom of the beams


Identified modeshapes, frequencies and modal damping rations of Strymonas river bridge

+					
	Identified frequencies		measured	measured	Model predicted
	No	Type of modes	Modal Frequencies (Hz)	Modal damping ratios (%)	Modal Frequencies (Hz)
	1	1 st bending	4.03	2,89	4,15
	2	1 st rotational	4.42	0.86	4.45
	3	2nd rotational	13.04	0.31	12.96
	4	2 nd bending	13.18	0.51	14.99

Conclusions based on 2 sequential vibration measurements (2007 and 2017):

- 1. Frequencies lower than the model predicted.
- 2. Frequencies do not change vs time



Identified modeshapes a) 1st bending mode (4,03Hz) ,b) 1st rotational mode (4,42Hz)

Deflection monitoring of post-tensioned beams

15-M6M7

Actually measured deflections are bigger than the model predicted (considering creep)

Chemical properties testing

Laboratory chemical properties included Cl -, SO4-2, NO3-and PH determination at the outer surface of the concrete (usually > 7 cm depth from the outer surface). $\boxed{\text{Salts (%)}}$

Core				PH					
	C	1-	SO	-2 4	N	D³.			
	upper	lower	upper	lower	upper	lower	upper	lower	
	3cm	3cm	3cm	3cm	3cm	3cm	3cm	3cm	
1	0.44	0.13	0.66	0.53	0.02	n/d	11.8	11.9	
2	0.32	0.26	0.34	0.72	0.01	0.01	11.9	12.1	
3	0.20	0.14	0.47	0.49	0.01	0.01	11.8	11.9	
4	0.07	0.14	0.39	0.49	0.01	n/d	11.9	12.0	
5	0.32	0.25	0.50	0.62	0.01	n/d	11.6	11.8	
6	0.33	0.27	0.37	0.66	n/d	n/d	11.8	11.9	
7	0.35	0.32	1.50	0.92	0.04	n/d	11.6	12.0	
8	0.13	0.06	0.59	0.46	n/d	n/d	12.3	12.4	
7.1		4					-		

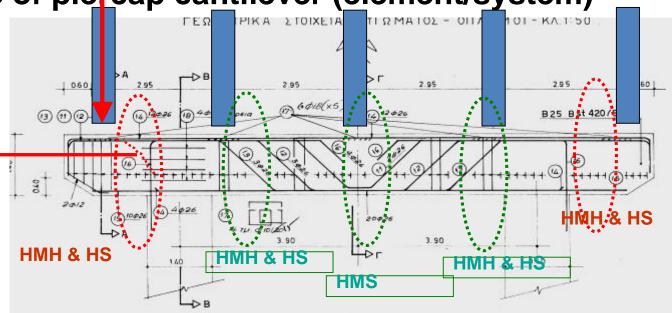
 Separate definition of PIs for 4 components of the bridge:

Superstructure, Piers, Abutments, Pavement

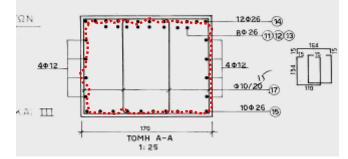
 Selection of 4 KPIs : *Reliability, Availability, Safety Agency Costs (Costs of maintenance)*

Failure modes triggered due to the deterioration mechanisms

- Abutment: No failure is expected in next 25 yearsPiers: Failure of the pier cap external
 - cantilever under vertical loads (due to corrosion).

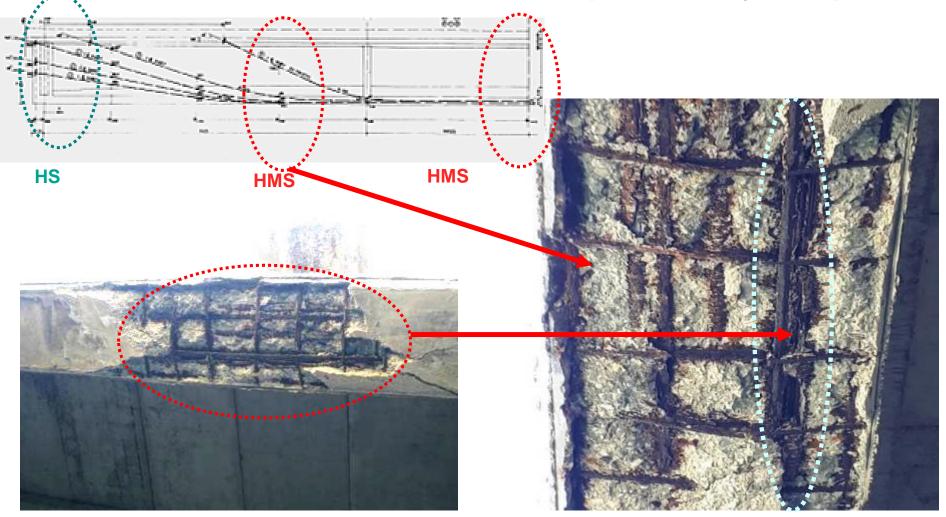

Prediction : t=47 or after 15 years

- Superstructure : Failure of the post-tensioned beams under vertical loads (outer beams due to corrosion)
- Prediction : t=52 or after 20 years


Failure modes triggered: Failure of piercap cantilever (element/system)

Hairline shear cracks

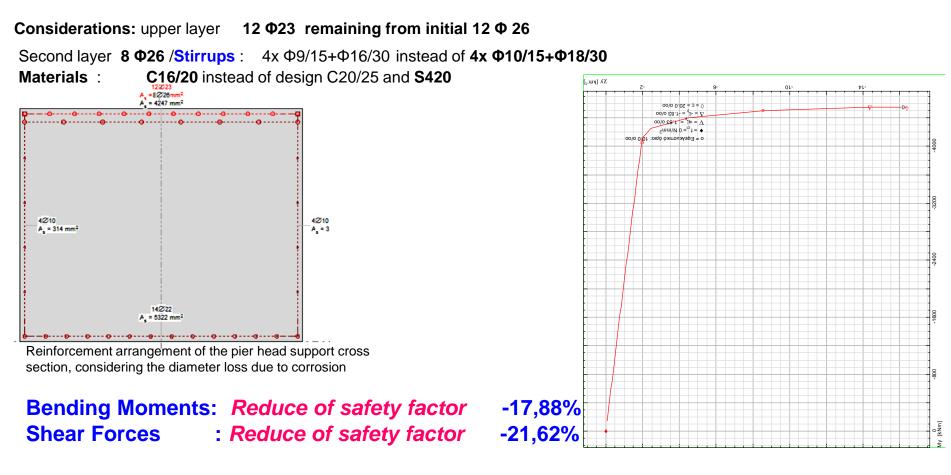
Delamination/spalling/ 10% steel bar diameter loss



OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany

SLIDE 153

00


Failure modes triggered due to the corrosion initiation of strands in some of the spans (element/system)

Failure modes triggered: Failure of piercap cantilever (element/system)

Calculation of the remaining bending moment capacity of the pier head support

Prediction of the pitting corrosion penetration in reinforcement bars (top layer)

Corrosion penetration is given by : $x_u = C_1(T - T_1)C_2(1)$

(Paik et al. 2004)

where: \mathbf{x}_{u} = corrosion penetration in unprotected steel in μm

T = age of the bridge,

T1= the time from the exposition of the reinforcement bars

C1= coefficient indicative of the annual corrosion rate

C₂ = coefficient indicative of the trend in corrosion propagation

Values of C_1 and C_2 were considered conservatively as of marine environment C1=70,6, C2=0,79.

The yearly penetration is resulted equal to 55,774µm

1. The additional loss of stirrups' diameter, that would reduce the safety factor to 1, approximately corresponds to **1** mm diameter loss.

To get such a diameter loss we need some **18** years of exposition and of non protection/repair of the already corroded stirrups to the corrosive environment

2. The additional loss of top layer bars, that would reduce the bending moments safety factor to 1 approximately

corresponds to 1,2 mm diameter loss.

To get such a diameter loss we need some **20** years of exposition and of non protection/repair of the already corroded stirrups to the corrosive environment

The conservative prediction of the shear failure of the piercap of the bridge piers in the next 15 years is considered herein

35 PIs are set for Reliability, 12 PIs for Safety, 11 PIs for Availability. Costs represents the yearly cost. The importance of PIs to each KPI are defined

	Inner															
35 PI	Impo	rtance c	DT PIS TO	or the Re		y or Su	perstruc	cture			PI Weig	hting fa	actors f	or Relia	bility	
	\checkmark	_			:							•				
crack width (longitudinal, due to reti	3	0.75	0.75	1.5	0.15	0.2	132	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.007576
Flexular structural cracks (width)	8	2	2	4	0.4	0.5333333	49.5	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202
Calcium leaching (area)	3	0.75	0.75	1.5	0.15	0.2	132	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.007576
Calcium leaching (intensity)	3	0.75	0.75	1.5	0.15	0.2	132	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.0075758	0.007576
Spalling depth (loss of concrete secti	7	1.75	1.75	3.5	0.35	0.4666667	132	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.017677
Loss of fl. Bars section (diameter)	10	2.5	2.5	5	0.5	0.6666667	56.571429	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.025253
loss of stirrups section (diameter)	10	2.5	2.5	5	0.5	0.6666667	39.6	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.025253
pitted corrosion	5	1.25	1.25	2.5	0.25	0.3333333	39.6	0.0126263	0.0126263	0.0126263	0.0126263	0.0126263	0.0126263	0.0126263	0.0126263	0.012626
rotation of the pier around horizonta	10	2.5	2.5	5	Λ.			roby D	roood	~	25	0.0252525	0.0252525	0.0252525	0.0252525	0.025253
settlement of the pier	10	2.5	2.5		• •	nalytica		агспу г	Toces	5	25	0.0252525	0.0252525	0.0252525	0.0252525	0.025253
pier head residual horizontal displac	10	2.5	2.5	5	0.5	0.6666667	39.6	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0 252525	0.0252525	0.025253
sulfate content	7	1.75	1.75	3.5	0.35	0.4666667	39.6	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.0176768	0.017677
carbonation depth	10	2.5	2.5	5	0.5	0.6666667	56.571429	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.0252525	0.025253
chloride content	8	2	2	4	0.4	0.5333333	39.6	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202	0.020202
Safety factor for dead/traffic loads	40	10	10	20	2	2.6666667	49.5	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.10101
Traffic load carrying capacity factor	40	10	10	20	2	2.6666667	9.9	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.1010101	0.10101
delamination (in area)	15	3.75	3.75	7.5	0.75	1	9.9	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879
delamination (in depth)	13	3.25	3.25	6.5	0.65	0.8666667	26.4	0.0328283	0.0328283	0.0328283	0.0328283	0.0328283	0.0328283	0.0328283	0.0328283	0.032828
ductility of steel bars	15	3.75	3.75	7.5	0.75	1	30.461538	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879
ductility of prestressing strands	15	3.75	3.75	7.5	0.75	1	26.4	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879
Shear like structural cracks (width)	15	3.75	3.75	7.5	0.75	1	26.4	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879
damping	30	7.5	7.5	15	1.5	2	26.4	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.075758
frequency	30	7.5	7.5	15	1.5	2	13.2	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.0757576	0.075758
Seismic rating factor	20	5	5	10	1	1.3333333	13.2	0.0505051	0.0505051	0.0505051	0.0505051	0.0505051	0.0505051	0.0505051	0.0505051	0.050505
Concrete Strength (actual vers as des	15	3.75	3.75	7.5	0.75	1	19.8	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879
Steel Strength (actual vers as design	15	3.75	3.75	7.5	0.75	1	26.4	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.0378788	0.037879

t=32 years

PIs and **KPis** for bridge elements and for the System *(Reliability)*

or directly for the system (Availabiity, Safety, Cost)

are calculated for the current bridge condition (2017 or 32 years after construction)

The PIs are calculated for each KPI Actual rating (t=32y) of PIs for Reliability of the Superstructure.

R_super,_{act}=1,745 *

ACTORE RELIABIENT NATING 1-52 TEARS										
PI	РІ ТҮРЕ	PI UNIT	REAL PRACTICE Pjh	STANDARD PRACTICE Pjh*	BEST PRACTICE P*jh	NORMALIZED VALUE	CALIBRATED NORMALIZED VALUE Pnormjh	PI WEIGHTS	PI Ratings	KPI RATING
bearings deformation	related to response	T = number of affected bearings	0	5	0	1	1	0,01010101	0,010101	
bearings displacement	related to response	T = number of affected bearings		5	0	1	1	0,01010101	0,010101	
Concrete spalling (area)	defects	T =percentage of affected area (m^2)	10	10	0	0	0	0,005050505	0	
Concrete spalling (depth)	defects	T =max depth of spalled area	20	5	0	-3	-0,2	0,007575758	-0,00152	
concrete cover (insufficient)	related to deterioration/defect	T =percentage of affected area (m^2)	50	10	0	-4	-0,2	0,007575758	-0,00152	
corrosion of flexular reinforcement bars (number)	defects	T =percentage of affected number of bars	20	5	0	-3	-0,2	0,01010101	-0,00202	
corrosion of stirrups (number)	defects	T =percentage of affected number of bars	30	5	0	-5	-0,2	0,012626263	-0,00253	
crack length (due to shrinkage)	defects	T = length (cm)	0,7	1	0,5	0,6	0,6	0,005050505	0,00303	
crack width (due to shrinkage)	defects	T = width (mm)	0,05	0,2	0,1	1,5	1,2	0,005050505	0,006061	
crack width (longitudinal, due to retraction o concrete	defects	T = width (mm)	0,05	0,2	0,1	1,5	1,2	0,007575758	0,009091	
Flexular structural cracks (width)	related to the impact of the defect	T = rating depending on width (mm)	0	0,3	0,2	3	1,2	0,02020202	0,024242	
Calcium leaching (area)	related to deterioration/defect	T =percentage of affected area (m^2)	5	10	0	0,5	0,5	0,007575758	0,003788	
Calcium leaching (intensity)	related to deterioration/defect	T =percentage of affected area (m^2)	3	5	0	0,4	0,4	0,007575758	0,00303	
Spalling depth (loss of concrete section)	related to the impact of the defect	T = ratio of superstructure section loss	10	10	0	0	0	0,017676768	0	
Loss of fl. Bars section (diameter)	related to the impact of the defect	T = ratio of lost diameter	10	10	0	0	0	0,025252525	0	
loss of stirrups section (diameter)	related to the impact of the defect	T = ratio of lost diameter	30	10	0	-2	-0,2	0,025252525	-0,00505	
pitted corrosion	defects	T =percentage of affected bars	0	0	0	1	1	0,012626263	0,012626	4 745
sagging of the inividual beams of one span	related to the impact of the defect	T =mm of midspan	25	20	15	-1	-0,2	0,025252525	-0,00505	1,745
residual horizontal dsiplacement	related to the impact of the defect	T =%vertical slope	0	0	0	1	1	0,025252525	0,025253	
loss of pre-stressing tendons section (diameter)	related to the impact of the defect	T = ratio of lost diameter	3	5	0	0,4	0,4	0,025252525	0,010101	
sulfate content	related to the impact of the defect	T =content in % of cement weight	0,06	0,08	0,06	1	1	0,017676768	0,017677	
carbonation depth	related to the impact of the defect	T =content in % of cement weight	6	10	0	0,4	0,4	0,025252525	0,010101	
chloride content	related to the impact of the defect	T =content in % of cement weight	0,05	0,06	0,04	0,5	0,5	0,02020202	0,010101	
Safety factor for dead/traffic loads	Analytical assessement	T= reduction of safety factor %	5	10	0	0,5	0,5	0,101010101	0,050505	
Traffic load carrying capacity factor	Analytical assessement	T = loads (KN) (qualitative scale here)	8	7	9	0,5	0,5	0,101010101	0,050505	
delamination (in area)	defects	T =ratio of delaminated area/total area	5	10	0	0,5	0,5	0,037878788	0,018939	
delamination (in depth)	defects	T =depth of delamination in mm	3	5	0	0,4	0,4	0,032828283	0,013131	
ductility of steel bars	related to the impact of the defect	T = ratio of fracture/yield strain	1,15	1,15	1,2	0	0	0,037878788	0	
ductility of prestressing strands	related to the impact of the defect	T = ratio of fracture/yield strain	1,1	1,1	1,15	0	0	0,037878788	0	
Shear like structural cracks (width)	related to the impact of the defect	T =t (mm)	0	0,2	0	1	1	0,037878788	0,037879	
damping	dynamic property from SHM	T = change of damping from the uncracked	0,045	0,05	0,02	0,166666667	0,166666667	0,075757576	0,012626	
frequency	dynamic property from SHM	T = measured/design bending frequency	0,9	1	1,2	-0,5	-0,2	0,075757576	-0,01515	
Seismic rating factor	Analytical assessement	T=seismic rating	1,1	1	1,1	1	1	0,050505051	0,050505	
Concrete Strength (actual vers as designed)	Properties from lab testing	T = actual/initial	0,85	0,95	1	-2	-0,2	0,037878788	-0,00758	
Steel Strength (actual vers as designed)	Properties from lab testing	T = actual/initial	0,9	1	1	0	0	0,037878788	0	
				-						

*1-5 Rating scale. 0 the worst, 5 the best condition rating

ACTUAL RELIABILITY RATING T=32 YEARS

PIs representing observed or measured deterioration intensity

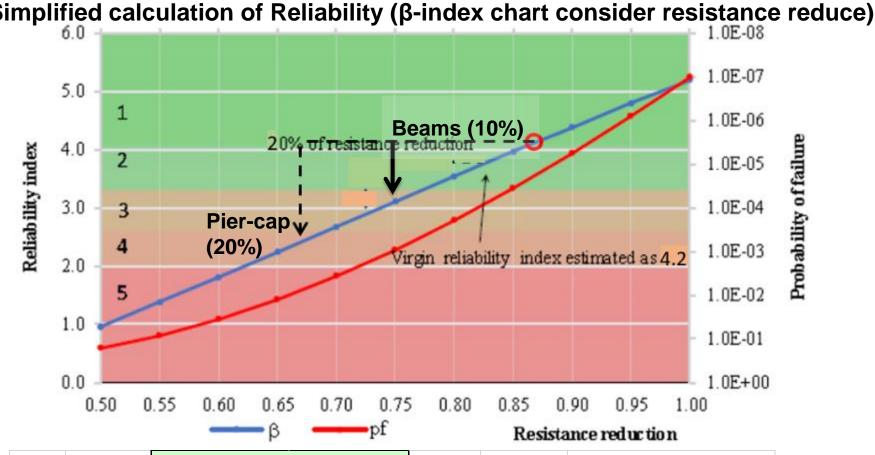
PIs representing observed or measured indications of structural loss

SLIDE 159

PIs representing analytical or analytical monitoring based assessment

Pls representing site & laboratory testing

Final System KPI rating score from (weighted KPI rating)


Actual (t=32y) Bridge System rating for Reliability R_System,_{act} = 2,10 *

		ACTUAL T=32 years				
S/N	COMPONENT	Qcomp NOTATION	Qcomp VALUE	WCOMP	KPI RATINGS	SYSTEM RELIABILITY RATING
1	Abutment	Qabut	2,227	0,24589	0,54759703	
2	Pier	Qpier	1,216	0,31421	0,38207936	2 10
3	Superstructure	Qsuper	1,745	0,31421	0,54829645	2,10
4	Pavement	Qpave	4,928	0,12568	0,61935104	
			SUM	1	2,09732388	

•Minimum condition rating of bridge equals substructure rating = 3 in 1-9 scale

or 1,66 in 1-5 scale < 2,10 (more conservative rating based on visual findings)

Simplified calcu	lation of Relia	ability (β-inde>	chart consid	er resistan
6.0				- 1.0E-0

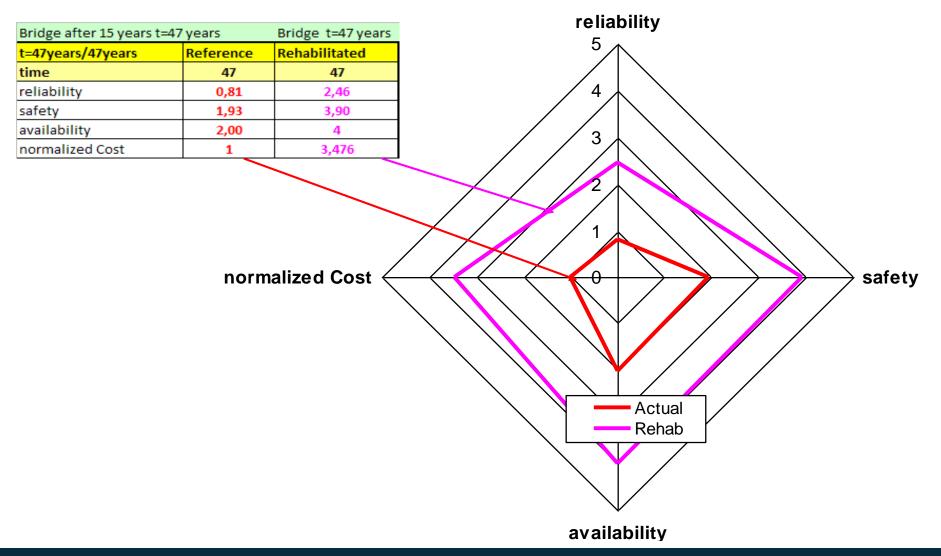
		ACTUAL SYSTEM RELIABIL	ITY T=32 years			
S/N	COMPONENT	Qcomp NOTATION	Qcomp VALUE	WCOMP	KPI RATINGS	SYSTEM RELIABILITY RATING
1	Abutment	Qabut	3,6	0,24589	0,885204	
2	Pier	Qpier	2,2	0,31421	0,691262	2.02
3	Superstructure	Qsuper	3,1	0,31421	0,974051	3,03 Or R,system = 2,2
4	Pavement	Qpave	3,8	0,12568	0,477584	
			SUM	1	3,028101	(min of components

B1. Actual rating of PIs for <u>Safety</u> of the Bridge Safety,Syst,_{act}=3,031

		ACTUAL SAFETY RATING OF THE BRIDGE SYSTEM										
KPI (BENCHMARK)	kpi Notificatio N	PI	РІ ТҮРЕ	PI UNIT	REAL PRACTICE Pjh	STANDARD PRACTICE Pjh*	BEST PRACTICE P*jh	NORMALIZ ED VALUE	CALIBRATED NORMALIZED VALUE Pnormjh	PI WEIGHTS	PI ratings	KPI RATING
Safety	s	Safety for the driver in terms of Safety barriers condition/adequacy	rating	T= Condition of safety barriers	8	5	9	0.75	0.75	0.108695652	0.081522	
SYSTEM		Safety for the driver due to the uneveness of the asphalt pavement	rating	T= required hours	0	1	0.75	4	1	0.086956522	0.086957	
		Safety for the driver due to the asphalt pavement defects (pot holes)	rating	T= depth* area of pot holes	0.001	0.005	0	0.8	0.8	0.108695652	0.086957	
		Safety for the driver due to the approach pavement settlement	rating	T= slope of the transmission pavement	0	0.2	0	1	1	0.086956522	0.086957	
		Safety for the driver due to frequent traffic lane closures	rating	T= qualitative rating	10	9	8	-1	-0.2	0.086956522	-0.01739	
		Safety for the driver due to asphalt pavement wearing and tearing (rutting, ravelling)	rating	T= rutting depth in mm	4	9	4	1	1	0.086956522	0.086957	3.0307971
		Safety for the driver due to asphalt pavement sliding under wet/rain conditions	rating	T= condition rating of the antiskid pavement	8	6	9	0.6666667	0.666666667	0.108695652	0.072464	
		Safety for the fisher boats from debris falls of the spalled concrete	rating	T= depth of spalled areas in mm	15	1	0	-14	-0.2	0.065217391	-0.01304	
		Safety of the driver due to the damage of expansion joints	rating	Y= condition rating of expansion joints	8	4	9	0.8	0.8	0.108695652	0.086957	
		Safety of the driver due to extreme sagging of the superstructure post-tensioned beams	rating	T= midspan deflection in cm	3	10	5	1.4	1	0.065217391	0.065217	
		Safety of the driver/ people due to the fall of spalled concrete surface debris under the bridge	rating	T= depth of spalled areas in mm	15	1	0	-14	-0.2	0.086956522	-0.01739	

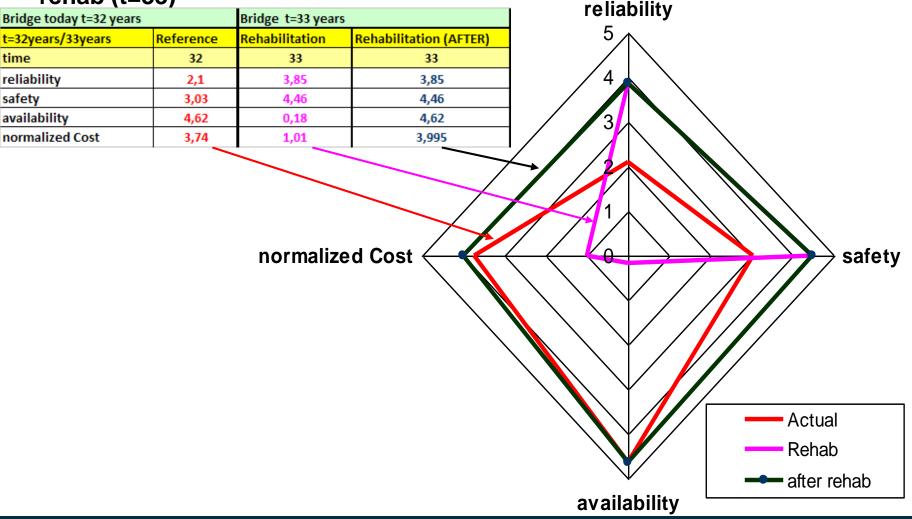
B2. Actual rating of PIs for Availability of the Bridge. A_system,_{act}=4,6202

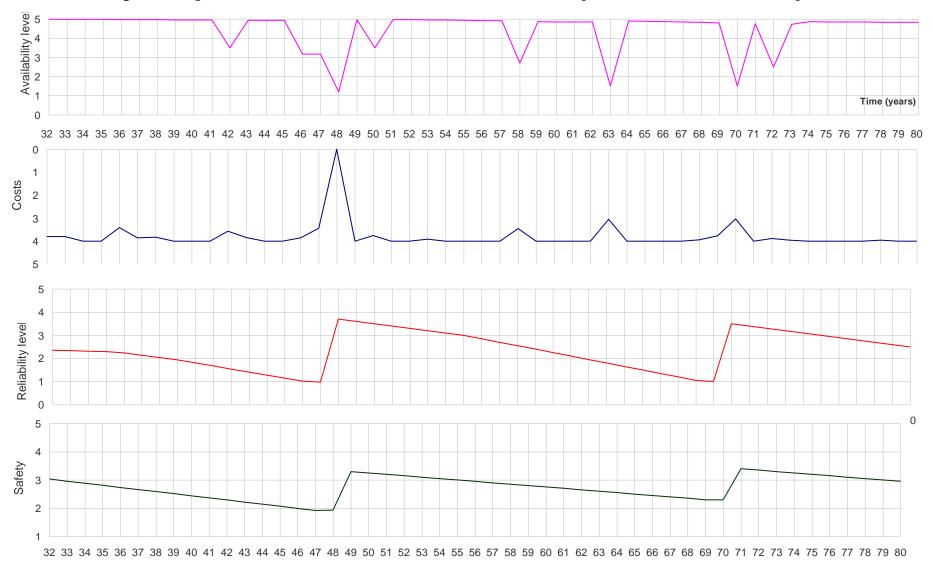
ACTUALAVA	LADILITTRATI	NG OF THE SYSTEM										
KPI (BENCHMARK)	KPI NOTIFICATION	PI	PI TYPE	PI UNIT	REAL PRACTICE Pjh	STANDARD PRACTICE Pjh*	BEST PRACTICE P*jh	NORMALIZED VALUE	CALIBRATED NORMALIZED VALUE Pnormjh	PI WEIGHTS	PI ratings	KPI RATING
Availability	А	Traffic lane closure for inspection with underside mechanized platform	rating	T= required hours	8	4	4	0	0	0.075949367	0	
SYSTEM		Traffic lane closure for deinstallation/installation of expansion joints	rating	T= required hours	0	1	0.75	4	1	0.101265823	0.101265823	
		Traffic lane closure for expansion joint repair	rating	T= required hours	0	4	2.5	2.666666667	1	0.050632911	0.050632911	
		Traffic lane closure for expansion joint replacement	rating	T= required days	0	0.8	0.4	2	1	0.101265823	0.101265823	
		Traffic bridge closure for uplifting of the bridge to replace bearings	rating	T= required days	0.1	0.4	0.375	12	1	0.126582278	0.126582278	
		Traffic bridge closure for maintaining/rehabilitating the post-tensioning beams	rating	T= required days	0	1	0.75	4	1	0.126582278	0.126582278	4.6202532
		Traffic bridge closure for maintaining/rehabilitating the piers/foundations	rating	T= required days	0.125	0.125	0.125	1	1	0.126582278	0.126582278	
		Traffic lane bridge closure for maintaining/replacing the safety barriers	rating	T= required hours	0	2	1.5	4	1	0.050632911	0.050632911	
		Traffic lane closure for maintaining the sidewalks	rating	T= required days	0.375	0.375	0.375	1	1	0.050632911	0.050632911	
		Traffic bridge closure for maintaining the approach pavement	rating	T= required hours	0.5	0.5	0.5	1	1	0.050632911	0.050632911	
		Traffic lane closure for replacing/maintaining the pavement/waterprrofing membrane	rating	T= required days	0	0.228	0.175	4.301886792	1	0.126582278	0.126582278	
		Traffic bridge closure for replacing/maintaining the lighting towers	rating	T= required hours	0.1	0.1	0.1	1	1	0.012658228	0.012658228	


C. Costs expected, for 2 alternative scenarios 1^{st} scenario (rehabilitation at t = 47 years) 2^{nd} scenario (rehabilitation at t = 33 years)

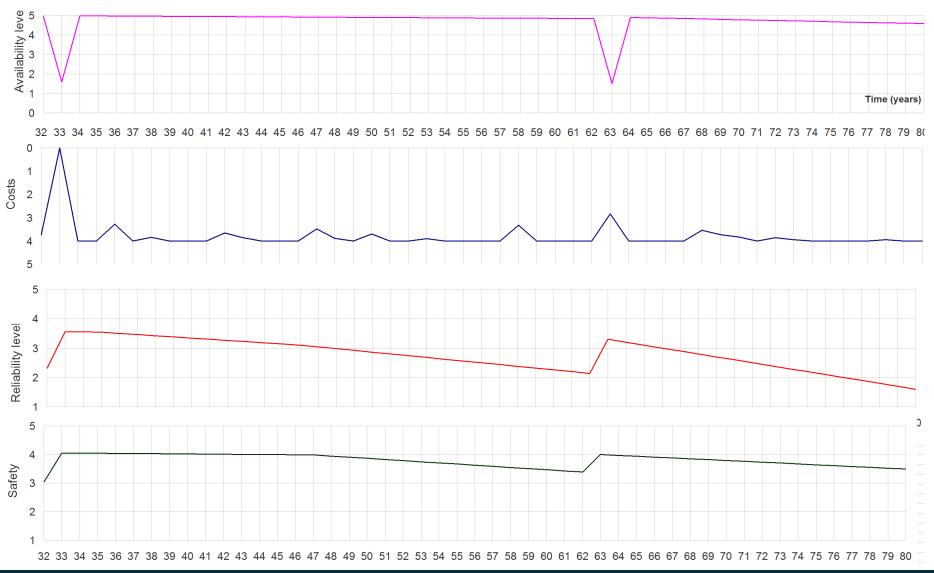
Maintenance costs	Rehabilitation at t=47	Rehabilitation at t=33
Pavement routine maintenance	80000	40000
Pavement rehabilitation	210000	210000
Expansion joints	710000	710000
Bearings	250000	500000
Safety barriers	220000	220000
Rehabilitation of piers	750000	600000
Rehabilitation of superstructure	1200000	700000
Inspection /NDT/SHM/Assessment costs	720000	470000
Total costs	4140000	3450000

Bridge life period examined (t=32 years (today) – t=80 years)


D.1 Spider diagrams at t=47years with/without rehabilitation


Spider diagrams of 2 scenarios on various times D. 2 Spider diagrams of actual condition and of the condition during and after

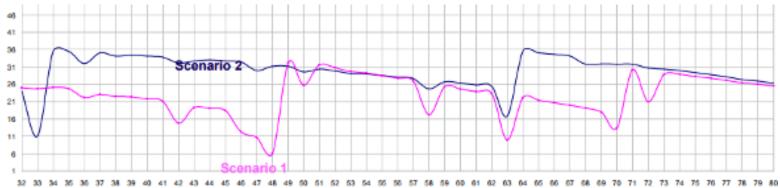
D. 2 Spider diagrams of actual condition and of the condition during and after rehab (t=33)



Life cycle prediction for scenario 1 (Rehab in t=47)

Life cycle prediction for scenario 2 (Rehab in t=33)

Comparison of the alternative scenarios


A comprehensive comparison of the two approaches is achieved herein only if cumulative effects of the followed maintenance strategy are expressed in one of the following ways:

1. Comparison of the 2 life cycle net present values 1st scenario NPValue¹ = 2682465 €

2nd scenario NPValue² = 2132119 €

NPV² < NPV¹

2. Comparison of the SpiderGrams life cycle volumes for the 2 scenarios

Scenario 1 Life cycle Spidergram volume: 1123,3 Scenario 2 Life cycle Spidergram volume: 1466,6 SV² > SV¹

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU

INDUSTRY ADVISORY BOARD – OWNERS MEETING

Sustainable Bridge Management

Standards, Guidelines and Recommendations

Helmut Wenzel – WENZEL Consulting Engineers, Austria

22nd November 2018 Bergisch Gladbach, Germany

WG5 Work Ongoing:

- 1. WG5 collects the results of the other WGs and prepares it for standardization
- There is a liaison to CEN TG250, ISO TC 350 and TC 59
- 3. Contributions to EUROCODES and ISO 21292-2 on Sustainable Construction in Civil Works are prepared
- 4. Guidelines on the COST TU 1406 results are prepared
- 5. A book publication is under development

What are Standards?

- 1. Represent a harmonised procedure agreed by all stakeholders
- 2. This makes them rather general than very specific (frameworks)
- National or project specific rules have to be created (NDPs)
- 4. Standards strictly apply in standard cases only
- 5. Extraordinary cases are not covered. This opens adjustment of standardized process to specific cases

Relevant Standards for Bridge Management

- 1. ISO 55000 Asset Management
- 2. ISO 31000 Risk Management Framework
- 3. EN 199x Eurocodes (DIN 1076, national)
- 4. EN 16991 Risk Based Inspection
- 5. ISO 21929 Sustainability of Construction Works
- 6. Safety, Environment and Security Guidelines
- 7. National Management Strategy (your case)

Why do we need Standards?

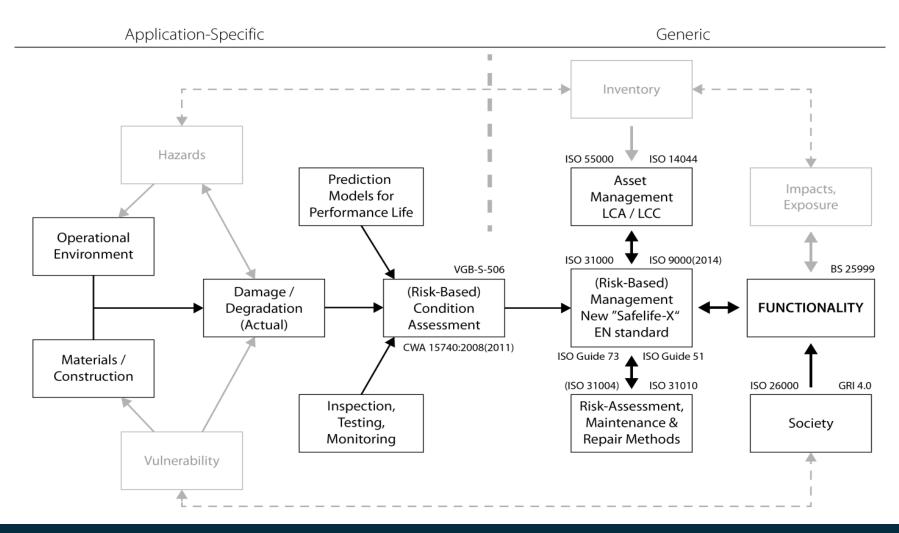
- From national to global markets
- Makes works comparable
- Provides juristically safe environment for operators
- Allows competition to get economic tenders
- Allows suppliers to develop economic products

Do Standards restrict Owners?

- No. They can be excluded if they don't fit
- Every Nation can issue Nationally Determined Parameters (NDP) to fit the frameworks for any specific case
- Examples: Seismic Hazards, Snow Loads
- But also rules for visual inspections or the use of monitoring results in the assessment process (i.e. Austria, RVS)
- Standards are for standard cases only! For special cases engineering and expert knowledge shall be applied (quote from EN 1990, page 7)

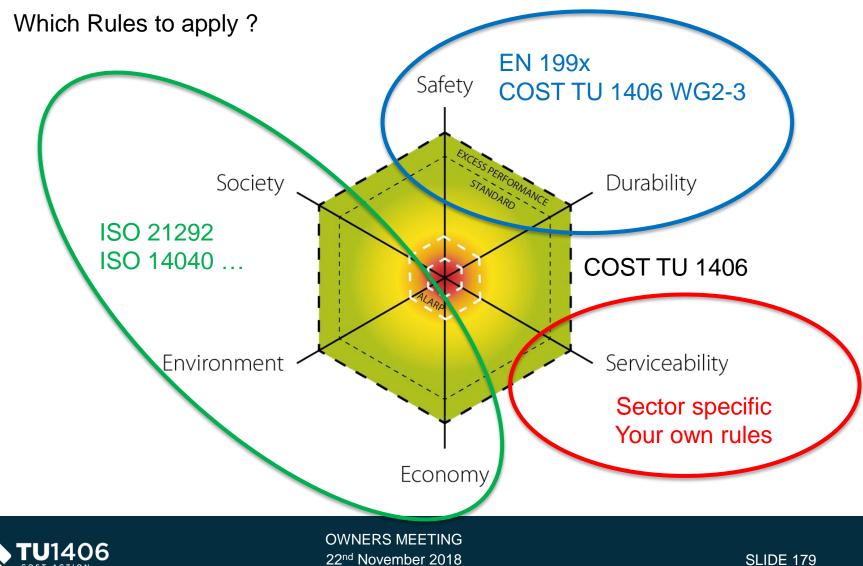
EN 1990:2002 says:

The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.

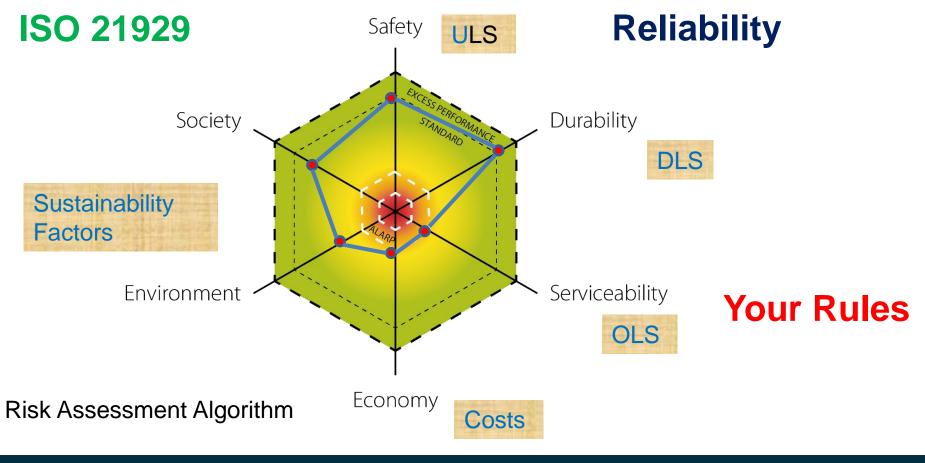


Standard Cases vs Special Cases

Example Risk based Asset Management



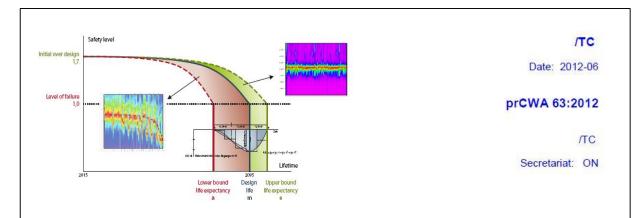
OWNERS MEETING 22nd November 2018 Bergisch Gladbach, Germany Version 3


SLIDE 178

Example Risk based Asset Management

Bergisch Gladbach, Germany

Risk = *Effects of Uncertainty on Objectives* Quantification of Risk



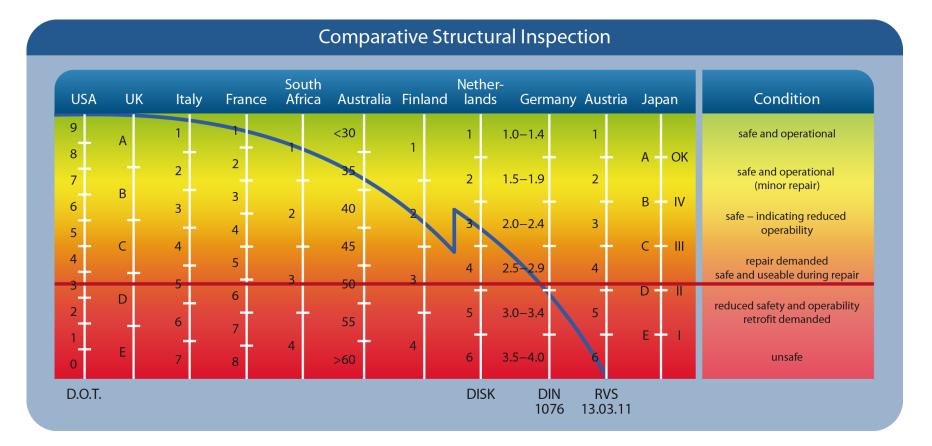
Application to define Aging (Degradation)

Examples from practice

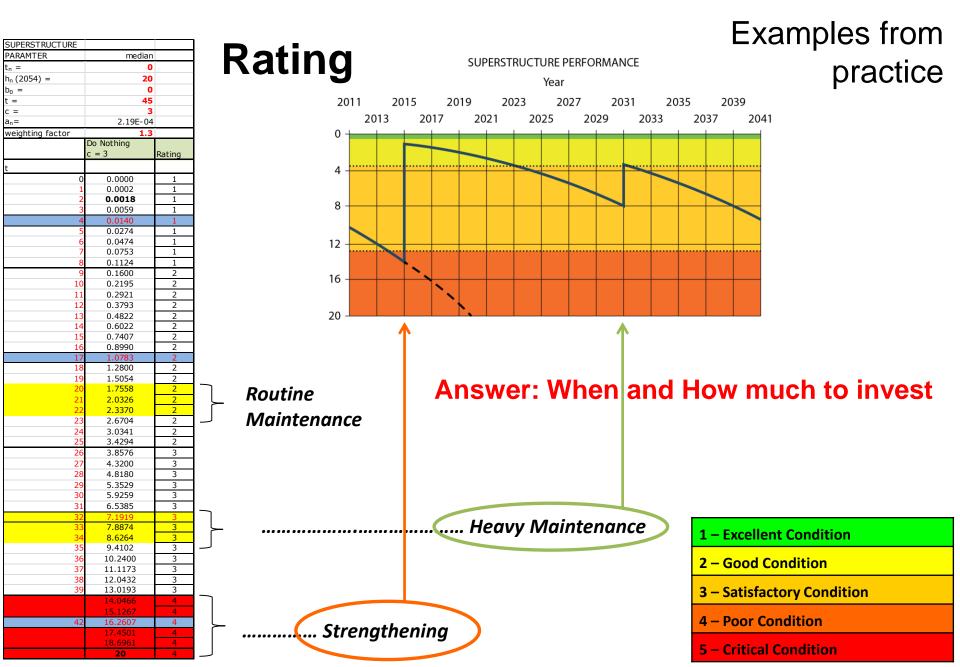
EN 16991:2018

Ageing behaviour of Structural Components with regard to Integrated Lifetime Assessment and subsequent Asset Management of Constructed Facilities —

Alterungsverhalten von Bauteilen in Bezug auf ganzheitliche Lebenszyklusbewertungen und weiterführendes Erhaltungsmanagement von Infrastrukturbauten —


ICS:

Descriptors: Draft version May 16th, 2012


Apply the internationally harmonised Rating

Examples from practice

Get the Trigger Mechanisms => Maintenance Measures

Where do we go?

- GIS surface and platform
- BIM
- Risk based procedures EN 16991
- Risk Assessment driven ISO 14040
- Sustainability driven ISO 21929
- Room for subjective (wisdom) driven Information
- From Science to Politics, Operators, Managers

THANK YOU FOR YOUR ATTENTION!

WWW.TU1406.EU